A111918 Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^3)).
1, 9, 89, 721, 18601, 2089, 103961, 832913, 68093153, 68347169, 8320810649, 8331482849, 1414167788681, 1416817979081, 1421435199689, 11373510649537, 3295255574810593, 366551352989977, 132591913780524097, 132652127531625601
Offset: 1
Examples
a(50) = 429245027972423430658635002176171233144054521, A111919(50) = 307330458857514095936081844184308729630720000: x(50) = a(50)/A111919(50) = 1.39668..., x(50)*7/6 = 1.62946....
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.
Links
- Robert Israel, Table of n, a(n) for n = 1..1150
- Eric Weisstein's World of Mathematics, Odd Part
- Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2)
Programs
-
Magma
val:=func
; [Numerator(&+[val(k)/(k^3):k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Jan 13 2020 -
Maple
S:= 0: Res:= NULL: for k from 1 to 25 do S:= S + 1/k^2/2^padic:-ordp(k,2); Res:= Res, numer(S) od: Res; # Robert Israel, Jan 13 2020
-
Mathematica
oddPart[n_] := n/2^IntegerExponent[n, 2]; x[n_] := Sum[oddPart[k]/k^3, {k, 1, n}]; a[n_] := Numerator[x[n]]; Array[a, 20] (* Jean-François Alcover, Dec 13 2021 *)
Comments