cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111918 Numerator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^3)).

Original entry on oeis.org

1, 9, 89, 721, 18601, 2089, 103961, 832913, 68093153, 68347169, 8320810649, 8331482849, 1414167788681, 1416817979081, 1421435199689, 11373510649537, 3295255574810593, 366551352989977, 132591913780524097, 132652127531625601
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 21 2005

Keywords

Comments

Denominator of x(n) = A111919(n);
x(n) = a(n)/A111919(n) ---> Pi*Pi/7 = 6*zeta(2)/7.

Examples

			a(50) = 429245027972423430658635002176171233144054521,
A111919(50) = 307330458857514095936081844184308729630720000:
x(50) = a(50)/A111919(50) = 1.39668..., x(50)*7/6 = 1.62946....
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.

Crossrefs

Programs

  • Magma
    val:=func; [Numerator(&+[val(k)/(k^3):k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Jan 13 2020
  • Maple
    S:= 0: Res:= NULL:
    for k from 1 to 25 do
      S:= S + 1/k^2/2^padic:-ordp(k,2);
      Res:= Res, numer(S)
    od:
    Res; # Robert Israel, Jan 13 2020
  • Mathematica
    oddPart[n_] := n/2^IntegerExponent[n, 2];
    x[n_] := Sum[oddPart[k]/k^3, {k, 1, n}];
    a[n_] := Numerator[x[n]];
    Array[a, 20] (* Jean-François Alcover, Dec 13 2021 *)