A111919 Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^3)).
1, 8, 72, 576, 14400, 1600, 78400, 627200, 50803200, 50803200, 6147187200, 6147187200, 1038874636800, 1038874636800, 1038874636800, 8310997094400, 2401878160281600, 266875351142400, 96342001762406400, 96342001762406400
Offset: 1
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.
Links
- Robert Israel, Table of n, a(n) for n = 1..1150
- Eric Weisstein's World of Mathematics, Odd Part
- Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2)
Programs
-
Magma
val:=func
; [Denominator(&+[val(k)/(k^3):k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Jan 13 2020 -
Maple
S:= 0: Res:= NULL: for k from 1 to 25 do S:= S + 1/k^2/2^padic:-ordp(k,2); Res:= Res, denom(S); od: Res; # Robert Israel, Jan 13 2020
-
Mathematica
oddPart[n_] := n/2^IntegerExponent[n, 2]; x[n_] := Sum[oddPart[k]/k^3, {k, 1, n}]; a[n_] := Denominator[x[n]]; Array[a, 20] (* Jean-François Alcover, Dec 13 2021 *)
Comments