A111935 Numerator of n-th term of the harmonic series after removal of all terms 1/m from Sum_{m=1..n} 1/m for which m contains a 9 in its decimal representation.
1, 3, 11, 25, 137, 49, 363, 761, 789, 8959, 27647, 368651, 377231, 128413, 261831, 4531207, 41461543, 8414831, 8531519, 8642903, 201237217, 203585563, 5145999379, 5200191979, 15757132337, 15908097437, 16048998197, 501745966907
Offset: 1
Examples
n=9: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/10 = 789/280, therefore a(9) = 789.
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 3, sect. 4, Problem 124.
- Jason Earls and Amarnath Murthy, Some fascinating variations in harmonic series, Octogon Mathematical Magazine, Vol. 12, No. 2, 2004.
Programs
-
Magma
a:=[k:k in [1..100]| not 9 in Intseq(k)]; [Numerator( &+[1/a[m]: m in [1..n]]): n in [1..30] ]; // Marius A. Burtea, Dec 30 2019
Extensions
Definition edited by N. J. A. Sloane, Dec 30 2019
Comments