cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111951 Period 8: repeat [0,3,1,2,2,1,3,0].

Original entry on oeis.org

0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 3, 1, 2, 2, 1, 3, 0
Offset: 0

Views

Author

Paul Barry, Aug 22 2005

Keywords

Comments

Permutation of {0,1,2,3} followed by its reversal, repeated.

Crossrefs

Programs

Formula

G.f.: (3x + x^2 + 2x^3 + 2x^4 + x^5 + 3x^6)/(1 - x^8);
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7);
a(n) = n(7n-1)/2 mod 4 = A022264(n) mod 4.
G.f.: -x*(3 - 2*x + 4*x^2 - 2*x^3 + 3*x^4) / ( (x-1)*(1+x^2)*(1+x^4) ). - R. J. Mathar, Feb 20 2015
a(n) = (3 + r/2 - s/2 + 2*cos(Pi*(1+2*n-r-s+t)/8) - 2*cos(Pi*(1-2*n+r-s+t)/8) - 2*sin(Pi*(1-2*n-r+s+t)/8))/2 where r = 2*sin(n*Pi/2), s = 2*cos(n*Pi/2) and t = cos(n*Pi). - Wesley Ivan Hurt, Oct 05 2018

Extensions

Name changed, the original name moved to comments. - Antti Karttunen, Aug 10 2017