A111958 Lucas numbers (A000032) mod 8.
2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3, 2, 5, 7
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..9999
- Paulo Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Quart. 43 (No. 1, 2005), 3-14.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1,-1,1,-1,1,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, {2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3}, 105] (* Ray Chandler, Aug 27 2015 *) Mod[LucasL[Range[0, 99]], 8] (* Alonso del Arte, Dec 19 2015 *)
Formula
From G. C. Greubel, Feb 08 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11).
a(n+12) = a(n). (End)
Comments