A112007 Coefficient triangle for polynomials used for o.g.f.s for unsigned Stirling1 diagonals.
1, 2, 1, 6, 8, 1, 24, 58, 22, 1, 120, 444, 328, 52, 1, 720, 3708, 4400, 1452, 114, 1, 5040, 33984, 58140, 32120, 5610, 240, 1, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 6, 8, 1; 24, 58, 22, 1; 120, 444, 328, 52, 1; ... G.f. for k=3 sequence A000914(n-1), [2,11,35,85,175,322,546,...], is G1(3,x)= g1(1,x)/(1-x)^5= (2+x)/(1-x)^5.
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x))
- C. M. Bender, D. C. Brody and B. K. Meister, Bernoulli-like polynomials associated with Stirling Numbers, arXiv:math-ph/0509008 [math-ph], 2005.
- E. Burlachenko, Composition polynomials of the RNA matrix and B-composition polynomials of the Riordan pseudo-involution, arXiv:1907.12272 [math.NT], 2019.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- Wolfdieter Lang, First 10 rows.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239. See 234. [_Tom Copeland_, Jan 03 2016]
- Andrew Elvey Price, Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
Crossrefs
Row sums give A001147(k+1) = (2*k+1)!!, k>=0.
Programs
-
Maple
a:= proc(k,m) option remember; if m >= 0 and k >= 0 then (k+m+1)*procname(k-1,m)+(k-m+1)*procname(k-1,m-1) else 0 fi end proc: a(0,0):= 1: seq(seq(a(k,m),m=0..k),k=0..10); # Robert Israel, Jul 20 2017
-
Mathematica
a[k_, m_] = Sum[(-1)^(k + n + 1)*Binomial[2k + 3, n]*StirlingS1[m + k - n + 2, m + 1 - n], {n, 0, m}]; Flatten[Table[a[k, m], {k, 0, 8}, {m, 0, k}]][[1 ;; 45]] (* Jean-François Alcover, Jun 01 2011, after Johannes W. Meijer *)
-
PARI
a(k, m)=sum(n=0, m, (-1)^(k + n + 1)*binomial(2*k + 3, n)*stirling(m + k - n + 2, m + 1 - n, 1)); for(k=0, 10, for(m=0, k, print1(a(k, m),", "))) \\ Indranil Ghosh, Jul 21 2017
Formula
a(k, m) = (k+m+1)*a(k-1, m) + (k-m+1)*a(k-1, m-1), if k >= m >= 0, a(0, 0)=1; a(k, -1):=0, otherwise 0.
a(k,m) = Sum_{n=0..m} (-1)^(k+n+1)*C(2*k+3,n)*Stirling1(m+k-n+2,m+1-n). - Johannes W. Meijer, Oct 16 2009
The compositional inverse (with respect to x) of y = y(t,x) = (x+t*log(1-x)) is x = x(t,y) = 1/(1-t)*y + t/(1-t)^3*y^2/2! + (2*t+t^2)/(1-t)^5*y^3/3! + (6*t+8*t^2+t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed above, the rational functions in t are the generating functions for the diagonals of |A008275|. See the Bala link for a proof. Cf. A008517. - Peter Bala, Dec 02 2011
Comments