A112092 a(n) is the least prime such that the multiplicative order of 4 mod a(n) equals n.
3, 5, 7, 17, 11, 13, 43, 257, 19, 41, 23, 241, 2731, 29, 151, 65537, 43691, 37, 174763, 61681, 337, 397, 47, 97, 251, 53, 87211, 15790321, 59, 61, 715827883, 641, 67, 137, 71, 433, 223, 229, 79, 4278255361, 83, 1429, 431, 353, 631, 277, 283, 193, 4363953127297
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1207 (first 100 terms from Amiram Eldar)
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{f = FactorInteger[4^n - 1][[;; , 1]]}, Do[p = f[[k]]; If[ MultiplicativeOrder[4, p] == n, Break[] ], {k, 1, Length[f]}]; p]; Array[a, 100] (* Amiram Eldar, Jan 27 2019 *)
-
PARI
a(n) = {my(p = 3); while (znorder(Mod(4, p)) != n, p = nextprime(p+1)); p;} \\ Michel Marcus, Feb 08 2016
Extensions
a(29)-a(30) from Michel Marcus, Feb 08 2016
More term from Amiram Eldar, Jan 27 2019
Comments