cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112116 Unique sequence of numbers {1,2,3,...,8} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (8th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

Original entry on oeis.org

1, 8, 8, 4, 8, 4, 8, 8, 4, 8, 8, 4, 4, 8, 8, 4, 4, 8, 8, 2, 4, 6, 4, 6, 2, 4, 8, 8, 2, 2, 8, 4, 8, 2, 2, 8, 8, 6, 4, 4, 6, 2, 4, 3, 8, 5, 8, 8, 7, 5, 4, 3, 4, 6, 6, 2, 1, 7, 2, 7, 8, 8, 8, 2, 8, 8, 4, 2, 7, 8, 8, 5, 3, 4, 2, 6, 5, 1, 8, 7, 4, 1, 5, 4, 4, 7, 4, 2, 4, 7, 6, 4, 6, 2, 6, 3, 5, 6, 7, 2, 5, 7, 8, 8, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2005

Keywords

Examples

			G.f.: A(x) = x + 8*x^2 + 8*x^3 + 4*x^4 + 8*x^5 + 4*x^6 + 8*x^7 +...
then A(x) = B(B(B(B(B(B(B(B(x)))))))) where
B(x) = x + x^2 - 6*x^3 + 60*x^4 - 720*x^5 + 9398*x^6 - 126958*x^7 +...
is the g.f. of A112117.
		

Crossrefs

Programs

  • PARI
    {a(n,m=8)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}