A112141 Product of the first n semiprimes.
4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1
Examples
a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes. From _Gus Wiseman_, Dec 06 2020: (Start) The sequence of terms together with their prime signatures begins: 4: (2) 24: (3,1) 216: (3,3) 2160: (4,3,1) 30240: (5,3,1,1) 453600: (5,4,2,1) 9525600: (5,5,2,2) 209563200: (6,5,2,2,1) 5239080000: (6,5,4,2,1) 136216080000: (7,5,4,2,1,1) 4495130640000: (7,6,4,2,2,1) 152834441760000: (8,6,4,2,2,1,1) 5349205461600000: (8,6,5,3,2,1,1) 203269807540800000: (9,6,5,3,2,1,1,1) 7927522494091200000: (9,7,5,3,2,2,1,1) 364666034728195200000: (10,7,5,3,2,2,1,1,1) 17868635701681564800000: (10,7,5,5,2,2,1,1,1) (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
Crossrefs
Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
Programs
-
Maple
A112141 := proc(n) mul(A001358(i),i=1..n) ; end proc: seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
-
Mathematica
NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *) FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
-
PARI
a(n)=my(v=vector(n),i,k=3);while(i
Charles R Greathouse IV, Apr 04 2013 -
Python
from sympy import factorint def aupton(terms): alst, k, p = [], 1, 1 while len(alst) < terms: if sum(factorint(k).values()) == 2: p *= k alst.append(p) k += 1 return alst print(aupton(18)) # Michael S. Branicky, Aug 31 2021
Comments