cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112144 McKay-Thompson series of class 8a for the Monster group.

Original entry on oeis.org

1, -20, -62, -216, -641, -1636, -3778, -8248, -17277, -34664, -66878, -125312, -229252, -409676, -716420, -1230328, -2079227, -3460416, -5677816, -9198424, -14729608, -23328520, -36567242, -56774712, -87369461, -133321908, -201825396, -303248408
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

The convolution square of this sequence is A107080, except for the constant term. - G. A. Edgar, Mar 22 2017

Examples

			T8a = 1/q - 20*q - 62*q^3 - 216*q^5 - 641*q^7 - 1636*q^9 - 3778*q^11 + ...
		

Crossrefs

Cf. A007248.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^4/(1 - x^(4*k))^4, {k, 1, nmax}] - 16*x*Product[(1 - x^(4*k))^4/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2017 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q]/eta[q^4])^4; a:= CoefficientList[Series[A - 16*q/A, {q,0,60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    q='q+O('q^66); Vec((eta(q)^4 / eta(q^4)^4 - q*4^2*eta(q^4)^4 / eta(q)^4)) \\ Joerg Arndt, Mar 23 2017

Formula

Expansion of q^(1/2) * (eta(q)^4 / eta(q^4)^4 - 4^2*eta(q^4)^4 / eta(q)^4) in powers of q. - G. A. Edgar, Mar 22 2017
a(n) ~ -exp(sqrt(2*n)*Pi) / (2^(5/4)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017

Extensions

More terms from G. A. Edgar, Mar 23 2017