A112150 McKay-Thompson series of class 16a for the Monster group.
1, 6, 15, 26, 51, 102, 172, 276, 453, 728, 1128, 1698, 2539, 3780, 5505, 7882, 11238, 15918, 22259, 30810, 42438, 58110, 78909, 106392, 142770, 190698, 253179, 334266, 439581, 575784, 750613, 974316, 1260336, 1624702, 2086530, 2670162, 3406695, 4333590
Offset: 0
Keywords
Examples
G.f. = 1 + 6*x + 15*x^2 + 26*x^3 + 51*x^4 + 102*x^5 + 172*x^6 + 276*x^7 + ... T16a = 1/q + 6*q^3 + 15*q^7 + 26*q^11 + 51*q^15 + 102*q^19 + 172*x^23 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for McKay-Thompson series for Monster simple group
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^6, {x, 0, n}]; (* Michael Somos, Jul 03 2014 *) nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^6, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^6, n))}; /* Michael Somos, Jul 03 2014 */
Formula
Expansion of chi(x)^6 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jul 03 2014
Expansion of q^(1/4) * 2 * (k(q) * k'(q))^(-1/2) in powers of q where k() is the elliptic modulus. - Michael Somos, Jul 03 2014
Expansion of q^(1/4) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^6 in powers of q. - Michael Somos, Jul 03 2014
Euler transform of period 4 sequence [ 6, -6, 6, 0, ...]. - Michael Somos, Jul 03 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (v^3 - u) * (u^3 - v) - 9*u*v * (-7 + 2*u*v). - Michael Somos, Jul 03 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 03 2014
G.f.: Product_{k>0} (1 + (-x)^k)^-6 = Product_{k>0} (1 + x^(2*k - 1))^6. - Michael Somos, Jul 03 2014
a(n) = (-1)^n * A022601(n). - Michael Somos, Jul 03 2014
a(n) ~ exp(Pi*sqrt(n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(6*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Comments