cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112173 McKay-Thompson series of class 36b for the Monster group.

Original entry on oeis.org

1, 2, 1, 4, 8, 6, 10, 16, 18, 26, 33, 40, 58, 74, 82, 112, 147, 166, 212, 268, 316, 392, 476, 560, 695, 838, 967, 1184, 1430, 1648, 1970, 2352, 2731, 3236, 3803, 4404, 5206, 6080, 6984, 8192, 9553, 10942, 12709, 14736, 16886, 19506, 22448, 25648
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

Convolution square of A112206. - Vaclav Kotesovec, Sep 08 2015

Examples

			T36b = 1/q +2*q^2 +q^5 +4*q^8 +8*q^11 +6*q^14 +10*q^17 +...
		

Crossrefs

Cf. A112206.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[((1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q];  a:= CoefficientList[Series[q^(1/3)*((eta[q^2]*eta[q^6])^2/(eta[q]*eta[q^3]*eta[q^4]*eta[q^12]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 16 2018 *)
  • PARI
    q='q+O('q^50); A = ((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)* eta(q^4)*eta(q^12)))^2; Vec(A) \\ G. C. Greubel, Jun 16 2018

Formula

a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Expansion of q^(1/3)*((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4)* eta(q^12)))^2 in powers of q. - G. C. Greubel, Jun 16 2018
Expansion of abs(q^(1/3)*(eta(q)*eta(q^3)/(eta(q^2)*eta(q^6)))^2) in powers of q. - G. C. Greubel, Jun 16 2018