cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112193 Coefficients of replicable function number "54b".

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 95, 110, 127, 145, 167, 191, 218, 249, 283, 322, 365, 414, 469, 529, 597, 673, 757, 851, 955, 1071, 1199, 1341, 1499, 1673, 1865, 2078, 2313, 2572, 2857, 3171, 3517, 3897
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 9. - Joerg Arndt, Aug 31 2015
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)/(1 + x^(m*k)), then a(n) ~ exp(Pi*sqrt((m-1)*n/(3*m))) * (m-1)^(1/4) / (2^(3/2) * 3^(1/4) * m^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + ... _Michael Somos_, Oct 06 2019
G.f. = q^-1 + q^2 + q^5 + 2*q^8 + 2*q^11 + 3*q^14 + 4*q^17 + 5*q^20 + ...
		

Crossrefs

Cf. A261733.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A261772 (m=10).

Programs

  • Maple
    b:= proc(n, i) option remember;  local r;
          `if`(2*n>i*(i+1)-(j-> 9*j*(j+1))(iquo(i, 9, 'r')), 0,
          `if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(9*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    b[n_, i_] := b[n, i] = Module[{q, r}, {q, r} = QuotientRemainder[i, 9]; If[2*n > i*(i+1) - 9*q*(q+1), 0, If[n == 0, 1, b[n, i-1] + If[i>n || r == 0, 0, b[n-i, i-1]]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 07 2016, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^9] / (QPochhammer[ q] QPochhammer[ q^18]), {q, 0, n}]; (* Michael Somos, Oct 06 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) / (eta(x + A) * eta(x^18 + A)), n))}; /* Michael Somos, Oct 06 2019 */

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3)/3) / (6^(3/4) * n^(3/4)) * (1 - (9*sqrt(3)/ (16*Pi*sqrt(2)) + sqrt(2)*Pi/(9*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
From Michael Somos, Oct 06 2019: (Start)
Expansion of q^(1/3) * eta(q^2) * eta(q^9) / (eta(q) * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...].
G.f. is a period 1 Fourier Series which satisifies f(-1 / (18 t)) = f(t) where q = exp(2 Pi i t).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + u*v) * (u^3 + v^3) - u*v * (1 + u^2*v^2).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = (w^2 - v) * (u^2 - v) - 2*u*v*w.
Convolution inverse of A261733.
(End)