A112269 Least index k such that the n-th prime properly divides the k-th tribonacci number.
5, 8, 15, 13, 9, 19, 29, 19, 30, 78, 15, 20, 36, 83, 30, 34, 65, 69, 101, 133, 32, 19, 271, 110, 20, 187, 14, 185, 106, 173, 587, 80, 12, 35, 46, 224, 72, 38, 42, 315, 101, 26, 73, 172, 383, 27, 84, 362, 35, 250, 37, 29, 507, 305, 55, 38, 178, 332, 62, 537, 778, 459, 31
Offset: 1
Examples
a(1) = 5 because prime(1) = 2 and, although tribonacci(4) = 2, the first tribonacci number properly divided by 2 is tribonacci(5) = 4. a(2) = 8 because prime(2) = 3 and tribonacci(8) = 24 = 2^3 * 3. a(3) = 15 because prime(3) = 5 and tribonacci(15) = 1705 = 5 * 11 * 31. a(4) = 13 because prime(4) = 7 and tribonacci(13) = 504 = 2^3 * 3^2 * 7. a(5) = 9 because prime(5) = 11 and tribonacci(9) = 44 = 2^2 * 11. a(6) = 19 because prime(6) = 13 and tribonacci(19) = 19513 = 13 * 19 * 79. a(7) = 29 because prime(7) = 17 and tribonacci(29) = 646064 = 2^4 * 7 * 17 * 19 * 239.
Programs
-
Mathematica
a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; f[n_] := Block[{k = 1, p = Prime[n]}, While[ Mod[a[k], p] != 0 || p >= a[k], k++ ]; k]; Array[f, 63] (* Robert G. Wilson v *)
Formula
Extensions
Corrected and extended by Robert G. Wilson v, Nov 30 2005
Comments