cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112277 Numbers m such that A112276(m) is composite.

Original entry on oeis.org

8, 14, 20, 21, 24, 26, 32, 33, 34, 38, 44, 45, 48, 50, 54, 55, 56, 57, 62, 63, 64, 68, 74, 75, 76, 80, 81, 84, 85, 86, 90, 91, 92, 93, 94, 98, 104, 105, 110, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 128, 132, 133, 135, 140, 141, 142, 143, 144, 145, 147, 152
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 01 2005

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := Module[{m = n + 1, d = DivisorSigma[0, n]}, While[DivisorSigma[0, m] > d, m++]; m]; Select[Range[150], CompositeQ[f[#]] &] (* Amiram Eldar, Feb 03 2020 *)

Formula

A000005(a(n)) <= A000005(A112276(a(n))).
A066247(A112276(a(n))) = 1.

A079427 Least m > n having the same number of divisors as n, a(1) = 1.

Original entry on oeis.org

1, 3, 5, 9, 7, 8, 11, 10, 25, 14, 13, 18, 17, 15, 21, 81, 19, 20, 23, 28, 22, 26, 29, 30, 49, 27, 33, 32, 31, 40, 37, 44, 34, 35, 38, 100, 41, 39, 46, 42, 43, 54, 47, 45, 50, 51, 53, 80, 121, 52, 55, 63, 59, 56, 57, 66, 58, 62, 61, 72, 67, 65, 68, 729, 69, 70, 71, 75, 74, 78, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 08 2003

Keywords

Comments

tau(a(n)) = tau(n) and tau(i) <> tau(n), n < i < a(n) (tau = A000005);

Examples

			Sets of divisors for n=10,11,12,13 and 14: D(10)={1,2,5,10}, D(11)={1,11}, D(12)={1,2,3,4,6,12}, D(13)={1,13}, D(14)={1,2,7,14}: therefore a(10)=14 (#D(10)=#D(14)).
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{m = n+1, d=DivisorSigma[0, n]}, While[DivisorSigma[0, m] != d, m++]; m]; Array[a, 100] (* Amiram Eldar, Feb 03 2020 *)
  • PARI
    a(n) = if (n==1, 1, my(m=n+1, nd=numdiv(n)); while(numdiv(m) != nd, m++); m); \\ Michel Marcus, Sep 14 2021
    
  • Python
    from sympy import divisors
    def a(n):
        if n == 1: return 1
        divisorsn, m = len(divisors(n)), n + 1
        while len(divisors(m)) != divisorsn: m += 1
        return m
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Sep 14 2021

Formula

a(A000040(k)) = A079428(A000040(k)) = A000040(k+1), as A000005(p)=2 for primes p.
a(n) = A171937(n) + n. - Ridouane Oudra, Sep 14 2021

A112275 Smallest number greater than n having at least as many divisors as n.

Original entry on oeis.org

2, 3, 4, 6, 6, 8, 8, 10, 10, 12, 12, 18, 14, 15, 16, 18, 18, 20, 20, 24, 22, 24, 24, 30, 26, 27, 28, 30, 30, 36, 32, 36, 34, 35, 36, 48, 38, 39, 40, 42, 42, 48, 44, 45, 48, 48, 48, 60, 50, 52, 52, 54, 54, 56, 56, 60, 58, 60, 60, 72, 62, 63, 64, 66, 66, 70, 68, 70, 70, 72, 72, 84
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 01 2005

Keywords

Comments

A000005(n) <= A000005(a(n)) and A000005(k) < A000005(n) for n
A000005(2*k-1) <= A000005(2*k) for 1<=k<=22. - Corrected by Robert Israel, Jul 23 2019

Crossrefs

Cf. A138171 (odd n for which a(n) > n+1).

Programs

  • Maple
    N:= 1000: # for all terms before the first term > N
    taus:= map(numtheory:-tau,[$1..N]):
    for n from 1 to N do
    found:= false:
    for k from n+1 to N while not found do
       if taus[k]>=taus[n] then found:= true; A[n]:= k fi
    od;
    if not found then break fi
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Jul 23 2019
  • Mathematica
    kmax[n_] := 2 n;
    a[n_] := Module[{tau = DivisorSigma[0, n], k},
         For[k = n + 1, k <= kmax[n], k++,
              If[DivisorSigma[0, k] >= tau, Return[k]]];
         Print["a(n) = k not found for n = ", n]];
    Array[a, 100] (* Jean-François Alcover, Dec 15 2021 *)
Showing 1-3 of 3 results.