A112305 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that n divides T(k).
1, 3, 7, 4, 14, 7, 5, 7, 9, 19, 8, 7, 6, 12, 52, 15, 28, 12, 18, 31, 12, 8, 29, 7, 30, 39, 9, 12, 77, 52, 14, 15, 35, 28, 21, 12, 19, 28, 39, 31, 35, 12, 82, 8, 52, 55, 29, 64, 15, 52, 124, 39, 33, 35, 14, 12, 103, 123, 64, 52, 68, 60, 12, 15, 52, 35, 100, 28, 117
Offset: 1
Keywords
Examples
T(1), T(2), T(3), T(4), ... are 1,1,2,4,7,13,24,...; a(3) = 7 because 3 first divides T(7) = A000073(8) = 24.
References
- Ed Pegg, Jr., Posting to Sequence Fan mailing list, Nov 30, 2005
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- J. L. Brenner, Linear Recurrence Relations, Amer. Math. Monthly, Vol. 61 (1954), 171-173.
- Eric Weisstein's World of Mathematics, Tribonacci Number.
Programs
-
Mathematica
n=3; Table[a=Join[{1}, Table[0, {n-1}]]; k=0; While[k++; s=Mod[Plus@@a, i]; a=RotateLeft[a]; a[[n]]=s; s!=0]; k, {i, 100}] (* T. D. Noe *)
Comments