cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112618 Let T(n) = A000073(n+1), n >= 1; a(n) = smallest k such that prime(n) divides T(k).

Original entry on oeis.org

3, 7, 14, 5, 8, 6, 28, 18, 29, 77, 14, 19, 35, 82, 29, 33, 64, 68, 100, 132, 31, 18, 270, 109, 19, 186, 13, 184, 105, 172, 586, 79, 11, 34, 10, 223, 71, 37, 41, 314, 100, 25, 72, 171, 382, 26, 83, 361, 34, 249, 36, 28, 506, 304, 54, 37, 177, 331, 61, 536, 777, 458, 30, 123
Offset: 1

Views

Author

T. D. Noe, Dec 05 2005

Keywords

Comments

Brenner proves that every prime divides some tribonacci number T(n). For the similar 3-step Lucas sequence A001644, there are primes (A106299) that do not divide any term.

Examples

			Sequence T(n) starts 1,1,2,4,7,13,24,44. For the primes 2,3,7,11,13, it is easy to see that a(1)=3, a(2)=7, a(4)=5, a(5)=8, a(6)=6.
		

Crossrefs

Equals A112312(n)-1.

Programs

  • Mathematica
    a[0]=0; a[1]=a[2]=1; a[n_]:=a[n]=a[n-1]+a[n-2]+a[n-3]; f[n_]:= Module[{k=2, p=Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(n) = A112305(prime(n)).

A112374 Let T(n) = A000078(n+2), n >= 1; a(n) = smallest k such that n divides T(k).

Original entry on oeis.org

1, 3, 6, 4, 6, 9, 8, 5, 9, 13, 20, 9, 10, 8, 6, 10, 53, 9, 48, 28, 18, 20, 35, 18, 76, 10, 9, 8, 7, 68, 20, 15, 20, 53, 30, 9, 58, 48, 78, 28, 19, 18, 63, 20, 68, 35, 28, 18, 46, 108, 76, 10, 158, 9, 52, 8, 87, 133, 18, 68, 51, 20, 46, 35, 78, 20, 17, 138, 35, 30, 230, 20, 72, 58, 76
Offset: 1

Views

Author

Jonathan Vos Post, Dec 02 2005

Keywords

Comments

Rank of apparition of n in the tetranacci numbers. - T. D. Noe, Dec 05 2005
This sequence is well-defined. Proof by T. D. Noe: for every prime p, Brenner proves we can find k(p) such that p divides the k(p)-th term of n-step Fibonacci. Using Brenner's methods, we know that p will also divide every j*k(p)-th term of the sequence for any j>0. We use this last fact to go to the general case: For integer m, we can find a term that m divides as follows: (1) factor m into primes: m = p1^e1 p2^e2...pr^er, (2) let K = m k(p1) k(p2)...k(pr) / (p1 p2 ... pr) (3) then m will divide the K-th term of the sequence. In general, K is much too large. However, it does show that every prime divides a term of every n-step Fibonacci sequence for n>1. - T. D. Noe, Dec 05 2005

Crossrefs

Programs

  • Mathematica
    n=4; Table[a=Join[{1}, Table[0, {n-1}]]; k=0; While[k++; s=Mod[Plus@@a, i]; a=RotateLeft[a]; a[[n]]=s; s!=0]; k, {i, 100}] (* T. D. Noe, Dec 05 2005 *)

Formula

a(n) = Min{k: n | A000078(k)}.

Extensions

Corrected by T. D. Noe, Dec 05 2005
Showing 1-2 of 2 results.