A112309 Triangle read by rows: row n gives terms in lazy Fibonacci representation of n.
1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 3, 2, 5, 1, 2, 5, 1, 3, 5, 2, 3, 5, 1, 2, 3, 5, 1, 3, 8, 2, 3, 8, 1, 2, 3, 8, 2, 5, 8, 1, 2, 5, 8, 1, 3, 5, 8, 2, 3, 5, 8, 1, 2, 3, 5, 8, 2, 5, 13, 1, 2, 5, 13, 1, 3, 5, 13, 2, 3, 5, 13, 1, 2, 3, 5, 13, 1, 3, 8, 13, 2, 3, 8, 13, 1, 2, 3, 8, 13, 2, 5, 8, 13, 1, 2, 5, 8, 13, 1, 3
Offset: 1
Examples
Triangle begins: 1 meaning 1 = 1 2 meaning 2 = 2 1 2 meaning 3 = 1+2 1 3 meaning 4 = 1+3 2 3 meaning 5 = 2+3 1 2 3 meaning 6 = 1+2+3 (and not the Zeckendorf expansion 1+5) 2 5 meaning 7 = 2+5
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8253 (rows for n = 1..985 flattened)
- Rémy Sigrist, PARI program
- W. Steiner, The joint distribution of greedy and lazy Fibonacci expansions, Fib. Q., 43 (No. 1, 2005), 60-69.
Programs
-
Maple
A112309 := proc(n) local z,d ; z := convert(A104326(n),base,10) ; for d from 1 to nops(z) do if op(d,z) > 0 then printf("%d,",combinat[fibonacci](d+1)) ; end if; end do: end proc: for n from 1 to 20 do A112309(n) ; end do: # R. J. Mathar, Aug 28 2025
-
Mathematica
DeleteCases[IntegerDigits[Range[200], 2], {_, 0, 0, _}] A112309 = Map[DeleteCases[Reverse[#] Fibonacci[Range[Length[#]] + 1], 0] &, DeleteCases[IntegerDigits[-1 + Range[200], 2], {_, 0, 0, _}]] A112310 = Map[Length, A112309] (* Peter J. C. Moses, Mar 03 2015 *)
-
PARI
See Links section.
Extensions
Extended by Ray Chandler, Dec 01 2005
Comments