A112310 Number of terms in lazy Fibonacci representation of n.
0, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 5, 3, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 6, 4, 4, 5, 4, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6
Offset: 0
Examples
a(10) = 3 because A104326(10) = 1110 contains three ones.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- J. L. Brown, Jr., A new characterization of the Fibonacci numbers, Fibonacci Quarterly 3, No. 1 (1965), 1-8.
- Ron Knott, Using the Fibonacci numbers to represent whole numbers.
- Wolfgang Steiner, The joint distribution of greedy and lazy Fibonacci expansions, Fib. Q., 43 (No. 1, 2005), 60-69.
Crossrefs
Programs
-
Haskell
a112310 n = a112310_list !! n a112310_list = concat fss where fss = [0] : [1] : (map (map (+ 1))) (zipWith (++) fss $ tail fss) -- Reinhard Zumkeller, Oct 26 2013
-
Maple
A112310 := proc(n) convert(A104326(n),base,10) ; add(d,d=%) ; end proc: seq(A112310(n),n=0..120) ; # R. J. Mathar, Aug 28 2025
-
Mathematica
DeleteCases[IntegerDigits[Range[200], 2], {_, 0, 0, _}] A112309 = Map[DeleteCases[Reverse[#] Fibonacci[Range[Length[#]] + 1], 0] &, DeleteCases[IntegerDigits[-1 + Range[200], 2], {_, 0, 0, _}]] A112310 = Map[Length, A112309] (* Peter J. C. Moses, Mar 03 2015 *)
Formula
Extensions
Extended by Ray Chandler, Dec 01 2005
Merged with a sequence from Casey Mongoven, Mar 20 2006, by Franklin T. Adams-Watters, Dec 19 2006
Comments