A112317 Coefficients of x^n in the n-th iteration of (x + x^2) for n>=1.
1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, 3479498880, 90230486346, 2584679465160, 81056989408928, 2762187020749144, 101633218030586364, 4015771398425994048, 169588657820702174728
Offset: 1
Keywords
Examples
The initial iterations of x + x^2 begin: F(x) = (1)*x + x^2; F(F(x)) = x + (2)*x^2 + 2*x^3 + x^4; F(F(F(x))) = x + 3*x^2 + (6)*x^3 + 9*x^4+ 10*x^5+ 8*x^6+ 4*x^7+ x^8; F(F(F(F(x)))) = x + 4*x^2 + 12*x^3 + (30)*x^4 + 64*x^5 +...; F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + 70*x^4 + (220)*x^5 +...; F(F(F(F(F(F(x)))))) = x + 6*x^2 + 30*x^3 + 135*x^4 + 560*x^5 + (2170)*x^6 +...; where the terms in parenthesis illustrate how to form this sequence.
Links
- Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 1..300 (first 100 terms from Paul D. Hanna)
Programs
-
PARI
{a(n)=local(F=x+x^2, G=x+x*O(x^n));if(n<1,0, for(i=1,n,G=subst(F,x,G));return(polcoeff(G,n,x)))} for(n=1, 30, print1(a(n), ", "))
Formula
a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(x+x^2) with F_1(x) = x+x^2.
Extensions
Added cross-references and comments; name and example changed by Paul D. Hanna, Feb 04 2011
Comments