cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A122888 Triangle, read by rows, where row n lists the coefficients of x^k, k=1..2^n, in the n-th iteration of (x + x^2) for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 9, 10, 8, 4, 1, 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1, 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750, 105024, 160120, 225696, 293685, 352074, 387820, 391232, 359992, 300664, 226580
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2006

Keywords

Comments

T(n, k) is the number of strings of length k-1 on the alphabet {1, 2, ..., n} such that between every two occurrences of a letter i there is an occurrence of a letter strictly larger than i. For example, for n = 3, k = 4 we have the strings 121, 131, 232 and the six permutations of 123. - Joel B. Lewis, May 06 2008

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 2, 1;
  1, 3, 6, 9, 10, 8, 4, 1;
  1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
  1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
  1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
  1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...;
  1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...;
  1, 9, 72, 540, 3864, 26628, 177744, 1153740, 7303164, 45179508,...;
  1, 10, 90, 765, 6240, 49260, 378312, 2836548, 20817588,...; ...
Multiplying the g.f. of column k by (1-x)^k, k>=1, with leading zeros,
 yields the g.f. of row k in the triangle A122890:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 5;
  0, 0, 0, 10, 14;
  0, 0, 0, 8, 70, 42;
  0, 0, 0, 4, 160, 424, 132;
  0, 0, 0, 1, 250, 1978, 2382, 429;
  0, 0, 0, 0, 302, 6276, 19508, 12804, 1430; ...
in which the main diagonal is the Catalan numbers,
 and the row sums form the factorials.
		

Crossrefs

Cf. A007018 (row sums), diagonals: A112317, A112319, A122887; A092123 (largest term in row); A122889 (antidiagonal sums); A122890 (related triangle).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, x,
          expand((x-> x+x^2)(b(n-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=0..5);  # Alois P. Heinz, Mar 14 2016
  • Mathematica
    f[0][x_] = x; f[n_][x_] := f[n][x] = f[n-1][x+x^2]; row[n_] := CoefficientList[f[n][x], x] // Rest; Table[row[n], {n, 0, 5} ] // Flatten (* Jean-François Alcover, Sep 10 2012 *)
  • Maxima
    T(m,n):=if m=0 and n=1 then 1 else if m=0 and n>1 then 0 else  if m=1 then binomial(1,n-1) else sum(binomial(i,n-i)*T(m-1,i),i,1,n); /* Vladimir Kruchinin, May 19 2012 */
  • PARI
    {T(n,k)=local(F=x+x^2, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, k, x)))}
    for(n=0, 6, for(k=1, 2^n, print1(T(n, k), ", ")); print(""))
    

Formula

T(n,k) = [x^k] F_n(x) where F_{n+1}(x) = F_n(x+x^2) for n>=1, with F_0(x)=x.

Extensions

Name changed slightly by Paul D. Hanna, Apr 29 2013

A135080 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of x+x^2 (cf. A122888).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 7, 3, 1, 50, 40, 15, 4, 1, 436, 326, 112, 26, 5, 1, 4912, 3492, 1128, 240, 40, 6, 1, 68098, 46558, 14373, 2881, 440, 57, 7, 1, 1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1, 21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
50, 40, 15, 4, 1;
436, 326, 112, 26, 5, 1;
4912, 3492, 1128, 240, 40, 6, 1;
68098, 46558, 14373, 2881, 440, 57, 7, 1;
1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1;
21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100, 9, 1; ...
Coefficients in iterations of (x+x^2) form table A122888:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
This triangle T transforms one diagonal in the above table into another;
start with the main diagonal of A122888, A112319, which begins:
[1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
then the transform T*A112319 equals A112317, which begins:
[1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, ...];
and the transform T*A112317 equals A112320, which begins:
[1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
		

Crossrefs

Cf. columns: A135081, A135082, A135083.
Cf. related tables: A122888, A166900, A187005, A187115, A187120.
Cf. related sequences: A112319, A112317, A112320, A187009.

Programs

  • PARI
    {T(n,k)=local(F=x,M,N,P,m=max(n,k)); M=matrix(m+2,m+2,r,c,F=x;for(i=1,r+c-2,F=subst(F,x,x+x^2+x*O(x^(m+2))));polcoeff(F,c)); N=matrix(m+1,m+1,r,c,M[r,c]);P=matrix(m+1,m+1,r,c,M[r+1,c]);(P~*N~^-1)[n+1,k+1]}
    
  • PARI
    /* Generate by method given in A187005, A187115, A187120 (faster): */
    {T(n,k)=local(Ck=x);for(m=1,n-k+1,Ck=(1/x^k)*subst(truncate(x^k*Ck),x,x+x^2 +x*O(x^m)));polcoeff(Ck,n-k+1,x)}

Formula

Columns may be generated by a method illustrated by triangles A187005, A187115, and A187120. The main diagonal of triangles A187005, A187115, and A187120, equals columns 0, 1, and 2, respectively.

Extensions

Added cross-reference; example corrected and name changed by Paul D. Hanna, Feb 04 2011

A166900 Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 9, 21, 9, 1, 64, 156, 84, 16, 1, 630, 1540, 935, 230, 25, 1, 7916, 19160, 12480, 3564, 510, 36, 1, 121023, 288813, 196623, 61845, 10465, 987, 49, 1, 2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1, 45179508, 104657520
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Compare to the triangle A071207 that transforms rows into diagonals in the table of iterations of x/(1-x), where A071207(n,k) gives the number of labeled free trees with n vertices and k children of the root that have a label smaller than the label of the root. Does this triangle have a similar interpretation?

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
9, 21, 9, 1;
64, 156, 84, 16, 1;
630, 1540, 935, 230, 25, 1;
7916, 19160, 12480, 3564, 510, 36, 1;
121023, 288813, 196623, 61845, 10465, 987, 49, 1;
2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1;
45179508, 104657520, 74847168, 26415840, 5426949, 695079, 56511, 2844, 81, 1;
1059312264, 2420186616, 1755406674, 642448632, 140247810, 19683060, 1830080, 112520, 4410, 100, 1; ...
Coefficients in self-compositions of (x+x^2) form table A122888:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
This triangle T transforms rows of A122888 into diagonals of A122888;
the initial diagonals begin:
A112319: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
A112317: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028,..];
A112320: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
For example:
T * [1, 0, 0, 0, 0, 0, 0,...]~ = A112319;
T * [1, 1, 0, 0, 0, 0, 0,...]~ = A112317;
T * [1, 2, 2, 1, 0, 0, 0,...]~ = A112320.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A119820 Coefficients of x^n in the n-th iteration of x*(1+x)^2 for n>=1.

Original entry on oeis.org

1, 4, 27, 300, 4790, 101010, 2660028, 84191772, 3115739358, 132074618544, 6311492388432, 335744715016854, 19678501474466211, 1260060524755139120, 87519840721085385096, 6553840567691077634748, 526360263009035464610574
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2006

Keywords

Examples

			The successive iterations of F(x) = x*(1+x)^2 begin:
F(x) = (1)x + 2x^2 + x^3
F(F(x)) = x + (4)x^2 + 10x^3 + 18x^4 + 23x^5 + 22x^6 + 15x^7 + 6x^8 +...
F(F(F(x))) = x + 6x^2 + (27)x^3 + 102x^4 + 333x^5 + 960x^6 + 2472x^7 +...
F(F(F(F(x)))) = x + 8x^2 + 52x^3 + (300)x^4 + 1578x^5 + 7692x^6 +...
F(F(F(F(F(x))))) = x + 10x^2 + 85x^3 + 660x^4 + (4790)x^5 + 32920x^6+...
F(F(F(F(F(F(x)))))) = x + 12x^2 +126x^3 +1230x^4+11385x^5+(101010)x^6+...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x*(1+x)^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

Formula

a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(F_1(x)) with F_1(x) = x*(1+x)^2.

A112319 Coefficients of x^n in the (n-1)-th iteration of (x + x^2) for n>=1.

Original entry on oeis.org

1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, 1059312264, 27715541568, 800423573676, 25289923553700, 867723362137464, 32128443862364255, 1276818947065793736, 54208515369076658640, 2448636361058495090816, 117254071399557173396416
Offset: 1

Views

Author

Paul D. Hanna, Sep 06 2005

Keywords

Examples

			The iterations of (x+x^2) begin:
F(x) = x + (1)*x^2
F(F(x)) = x + 2*x^2 + (2)*x^3 + x^4
F(F(F(x))) = x + 3*x^2 + 6*x^3+ (9)*x^4 +...
F(F(F(F(x)))) = x + 4*x^2 + 12*x^3 + 30*x^4 + (64)*x^5 +...
F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + 70*x^4 + 220*x^5 + (630)*x^6 +...
coefficients enclosed in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2, G=x+x*O(x^n));if(n<1,0, for(i=1,n-1,G=subst(F,x,G));return(polcoeff(G,n,x)))}
    for(n=1,30,print1(a(n),", "))

Formula

a(n) = [x^n] F_{n-1}(x) where F_n(x) = F_{n-1}(x+x^2) with F_1(x) = x+x^2 and F_0(x)=x for n>=1.

A119821 Coefficients of x^n in the n-th iteration of x/(1-x)^2 for n>=1.

Original entry on oeis.org

1, 4, 33, 436, 8015, 189596, 5494797, 188692708, 7494744807, 338103170428, 17079035749061, 955117390512858, 58584586487137113, 3910851585418994256, 282272352712037938081, 21904366942822876046020
Offset: 1

Views

Author

Paul D. Hanna, Jun 01 2006

Keywords

Comments

The coefficient of x^n in the n-th iteration of x/(1-x) = n^(n-1) = A000169(n); does this variant have a simple formula for a(n)?

Examples

			The successive iterations of F(x) = x/(1-x)^2 begin:
F(x) = (1)x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + 6x^6 + 7x^7 + 8x^8 +...
F(F(x)) = x + (4)x^2 + 14x^3 + 46x^4 + 145x^5 + 444x^6 + 1331x^7 +...
F(F(F(x))) = x + 6x^2 + (33)x^3 + 174x^4 + 892x^5 + 4480x^6 +...
F(F(F(F(x)))) = x + 8x^2 + 60x^3 + (436)x^4 + 3102x^5 + 21728x^6 +...
F(F(F(F(F(x))))) = x + 10x^2 + 95x^3 + 880x^4 + (8015)x^5 +72090x^6+..
F(F(F(F(F(F(x)))))) = x + 12x^2+138x^3+1554x^4+17255x^5+(189596)x^6+..
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x/(1-x)^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

Formula

a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(F(x)) with F(x) = x/(1-x)^2.

A119815 Integer a(n) produces the least positive integer coefficient of x^n in the n-th iteration of g.f. A(x) where A(0)=0.

Original entry on oeis.org

1, 1, -1, 1, 1, -11, 23, -20, 731, -4860, -91205, 138329, 24813133, 222203538, -11857627480, -340590475934, 7798573417057, 602467423292955, -4252676907049394, -1469602631093521547, -14928401886412967891, 4982240895059491727005, 167923794808862463264206
Offset: 1

Views

Author

Paul D. Hanna, May 31 2006

Keywords

Examples

			The iterated iterations of g.f. A(x) begin:
A(x) = (1)x + x^2 - x^3 + x^4 + x^5 - 11x^6 + 23x^7 - 20x^8 + 731x^9+..
A(A(x)) = x + (2)x^2 - 2x^4 + 6x^5 - 8x^6 - 50x^7 + 78x^8 + 1688x^9+...
A(A(A(x))) = x + 3x^2 + (3)x^3 - 3x^4 - x^5 + 17x^6 - 81x^7 -370x^8+...
A(A(A(A(x)))) = x + 4x^2 + 8x^3 + (4)x^4 - 12x^5 + 4x^6 + 12x^7 +...
A(A(A(A(A(x))))) = x + 5x^2 + 15x^3 + 25x^4 + (5)x^5 - 55x^6 -33x^7+...
A(A(A(A(A(A(x)))))) = x + 6x^2 + 24x^3 + 66x^4 + 106x^5 + (4)x^6 +...
Coefficients [x^n] of n-th self-composition of A(x) forms A119816:
[1,2,3,4,5,4,7,8,3,9,11,4,13,11,14,8,17,4,19,4,1,4,23,24,5,17,27,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2+sum(k=3,n-1,a(k)*x^k),G=x+x*O(x^n));if(n<1,0,if(n<=2,1, for(k=1,n,G=subst(F,x,G));return((n-polcoeff(G,n,x)) )))}

A119817 Integer a(n) produces the least nonnegative integer coefficient of x^n in the n-th iteration of g.f. A(x).

Original entry on oeis.org

1, 1, -2, 8, -40, 210, -1032, 4074, -9084, -1485, -139344, -1178057, 97107644, 533077818, -43465435335, -997494915376, 35039558716800, 1885975569825115, -36684866143759995, -4946226556607087316, 24828007395162323458, 18213320246807011794109
Offset: 1

Views

Author

Paul D. Hanna, May 31 2006

Keywords

Examples

			The successive iterations of g.f. A(x) begin:
A(x) = (1)x + x^2 - 2x^3 + 8x^4 - 40x^5 + 210x^6 - 1032x^7 + 4074x^8+..
A(A(x)) = x + (2)x^2 - 2x^3 + 7x^4 - 30x^5 + 118x^6 -268x^7 -1430x^8+..
A(A(A(x))) = x + 3x^2 + (0)x^3 + 3x^4 -12x^5 +18x^6 +240x^7 -3119x^8+..
A(A(A(A(x)))) = x + 4x^2 + 4x^3 + (2)x^4 - 4x^5 - 18x^6 + 276x^7+...
A(A(A(A(A(x))))) = x + 5x^2 + 10x^3 + 10x^4 +(0)x^5 -20*x^6 +128*x^7+..
A(A(A(A(A(A(x)))))) = x + 6x^2 + 18x^3 +33x^4 +30x^5 +(0)x^6 -24x^7+..
Coefficients [x^n] of n-th iteration of A(x) forms A119818:
[1,2,0,2,0,0,0,0,0,0,0,10,0,0,7,12,0,6,0,9,2,11,0,8,10,13,18,18,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2+sum(k=3,n-1,a(k)*x^k),G=x+x*O(x^n)); if(n<1,0,if(n<=2,1, for(k=1,n,G=subst(F,x,G)); return((n-1-polcoeff(G,n,x)) )))}

A119819 a(n) equals the coefficient of x^(n-1) in the (n-1)-th iteration of g.f. A(x) for n>1, with a(1)=1.

Original entry on oeis.org

1, 1, 2, 12, 138, 2370, 54190, 1553258, 53883088, 2211883428, 105760271082, 5819880201432, 364979361177134, 25865387272507770, 2056021496464455000, 182094050389241652004, 17861355920109599058260, 1929874166854161381238676, 228564755268775651632722308, 29540844190975459101114949972
Offset: 1

Views

Author

Paul D. Hanna, May 31 2006

Keywords

Comments

Here the zeroth iteration of A(x) equals x, the first iteration is itself, the 2nd iteration of A(x) = A(A(x)), etc.

Examples

			The coefficients in the n-th iteration of g.f. A(x) begin:
n=1: [1, 1,  2,   12,   138,   2370,   54190,  1553258,   53883088, ...];
n=2: [1, 2,  6,   35,   370,   6000,  132344,  3704032,  126318024, ...];
n=3: [1, 3, 12,   75,   758,  11612,  245746,  6688885,  223699238, ...];
n=4: [1, 4, 20,  138,  1388,  20322,  411708, 10854152,  354952262, ...];
n=5: [1, 5, 30,  230,  2370,  33760,  656414, 16711414,  532707614, ...];
n=6: [1, 6, 42,  357,  3838,  54190, 1018484, 25016120,  775036254, ...];
n=7: [1, 7, 56,  525,  5950,  84630, 1553258, 36874397, 1107956996, ...];
n=8: [1, 8, 72,  740,  8888, 128972, 2337800, 53883088, 1568966580, ...];
n=9: [1, 9, 90, 1008, 12858, 192102, 3476622, 78308058, 2211883428, ...]; ...
where the diagonal of coefficients equals this sequence shift left 1 place.
...
More explicitly, the successive iterations of g.f. A(x) begin:
A(x) = (1)x + x^2 + 2x^3 + 12x^4 + 138x^5 + 2370x^6 + 54190x^7 +...
A(A(x)) = x + (2)x^2 + 6x^3 + 35x^4 + 370x^5 + 6000x^6 + 132344x^7 +...
A(A(A(x))) = x + 3x^2 + (12)x^3 + 75x^4 + 758x^5 + 11612x^6 +...
A(A(A(A(x)))) = x + 4x^2 + 20x^3 + (138)x^4 + 1388x^5 + 20322x^6 +...
A(A(A(A(A(x))))) = x + 5x^2 + 30x^3 + 230x^4 + (2370)x^5 + 33760x^6+...
A(A(A(A(A(A(x)))))) = x + 6x^2 +42x^3 +357x^4 +3838x^5 + (54190)x^6+...
...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2+sum(m=3,n-1,a(m)*x^m), G=x+x*O(x^n)); if(n<1, 0,if(n<=2,1,for(i=1, n-1, G=subst(F, x, G)); return(polcoeff(G, n-1, x))))}
    for(n=1,30,print1(a(n),", "))

A185755 Triangle: T(n,k) equals the coefficient of x^n*y^k in the n-th iteration of x*(1+xy)/(1-x), for n>=1, 0<=k

Original entry on oeis.org

1, 2, 2, 9, 15, 6, 64, 154, 120, 30, 625, 1995, 2340, 1190, 220, 7776, 31191, 49315, 38325, 14595, 2170, 117649, 571221, 1142932, 1204588, 704102, 215950, 27076, 2097152, 11992688, 29141994, 38972388, 30945432, 14570976, 3761310, 409836
Offset: 1

Views

Author

Paul D. Hanna, Feb 03 2011

Keywords

Examples

			Triangle begins:
1;
2, 2;
9, 15, 6;
64, 154, 120, 30;
625, 1995, 2340, 1190, 220;
7776, 31191, 49315, 38325, 14595, 2170;
117649, 571221, 1142932, 1204588, 704102, 215950, 27076;
2097152, 11992688, 29141994, 38972388, 30945432, 14570976, 3761310, 409836;
43046721, 283976517, 814059798, 1323693384, 1334427720, 853356072, 337738758, 75550188, 7303164; ...
		

Crossrefs

Cf. columns: A000169, A185756, A185757; row sums: A185523.
Cf. diagonals: A112317, A185758, A185759.

Programs

  • PARI
    {T(n,k)=local(A=x, G=x*(1+x*y)/(1-x)); for(i=1, n, A=subst(G, x, A+x*O(x^n)));polcoeff(polcoeff(A, n,x),k,y)}

Formula

T(n,0) = A000169(n) = n^(n-1).
T(n,n) = A112317(n).
Sum_{k=0..n-1} T(n,k) = A185523(n).
Sum_{k=0..n-1} (-1)^k*T(n,k) = 0^n.
Showing 1-10 of 14 results. Next