cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A166901 Column 1 of triangle A166900.

Original entry on oeis.org

1, 4, 21, 156, 1540, 19160, 288813, 5123608, 104657520, 2420186616, 62514944778, 1784255891484, 55767065855228, 1894463658611680, 69504774168222109, 2738952451360200312, 115380142451625516088, 5174227834995200591840
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+3, n+3, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); N=matrix(n+2, n+2, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); P=matrix(n+2, n+2, r, c, M[r+1, c]); (P~*N~^-1)[n+2, 2]}

A166902 Column 2 of triangle A166900.

Original entry on oeis.org

1, 9, 84, 935, 12480, 196623, 3591560, 74847168, 1755406674, 45804773872, 1317004696656, 41386864224420, 1411592788770580, 51942256939923051, 2051313029747633376, 86548588478842559964, 3885584044838123386104
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+4, n+4, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+4)))); polcoeff(F, c)); N=matrix(n+3, n+3, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+4)))); polcoeff(F, c)); P=matrix(n+3, n+3, r, c, M[r+1, c]); (P~*N~^-1)[n+3, 3]}

A166903 Column 3 of triangle A166900.

Original entry on oeis.org

1, 16, 230, 3564, 61845, 1207696, 26415840, 642448632, 17240108314, 506777596248, 16210958231104, 560988459704192, 20891752852722701, 833382707754108896, 35461362393617267808, 1603581518693484768464
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+5, n+5, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+5)))); polcoeff(F, c)); N=matrix(n+4, n+4, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+5)))); polcoeff(F, c)); P=matrix(n+4, n+4, r, c, M[r+1, c]); (P~*N~^-1)[n+4, 4]}

A166904 Row sums of triangle A166900.

Original entry on oeis.org

1, 2, 7, 40, 321, 3361, 43667, 679806, 12358885, 257281501, 6039232167, 157879127902, 4550258562799, 143367509714352, 4903128661348411, 180907738215049666, 7163333648262397913, 303006716530386750233
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+2, n+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+2)))); polcoeff(F, c)); N=matrix(n+1, n+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); P=matrix(n+1, n+1, r, c, M[r+1, c]); M=(P~*N~^-1); sum(k=1,n+1,M[n+1,k])}

A135080 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of x+x^2 (cf. A122888).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 7, 3, 1, 50, 40, 15, 4, 1, 436, 326, 112, 26, 5, 1, 4912, 3492, 1128, 240, 40, 6, 1, 68098, 46558, 14373, 2881, 440, 57, 7, 1, 1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1, 21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
50, 40, 15, 4, 1;
436, 326, 112, 26, 5, 1;
4912, 3492, 1128, 240, 40, 6, 1;
68098, 46558, 14373, 2881, 440, 57, 7, 1;
1122952, 744320, 221952, 42604, 6135, 728, 77, 8, 1;
21488640, 13889080, 4029915, 748548, 103326, 11565, 1120, 100, 9, 1; ...
Coefficients in iterations of (x+x^2) form table A122888:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
This triangle T transforms one diagonal in the above table into another;
start with the main diagonal of A122888, A112319, which begins:
[1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
then the transform T*A112319 equals A112317, which begins:
[1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, ...];
and the transform T*A112317 equals A112320, which begins:
[1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
		

Crossrefs

Cf. columns: A135081, A135082, A135083.
Cf. related tables: A122888, A166900, A187005, A187115, A187120.
Cf. related sequences: A112319, A112317, A112320, A187009.

Programs

  • PARI
    {T(n,k)=local(F=x,M,N,P,m=max(n,k)); M=matrix(m+2,m+2,r,c,F=x;for(i=1,r+c-2,F=subst(F,x,x+x^2+x*O(x^(m+2))));polcoeff(F,c)); N=matrix(m+1,m+1,r,c,M[r,c]);P=matrix(m+1,m+1,r,c,M[r+1,c]);(P~*N~^-1)[n+1,k+1]}
    
  • PARI
    /* Generate by method given in A187005, A187115, A187120 (faster): */
    {T(n,k)=local(Ck=x);for(m=1,n-k+1,Ck=(1/x^k)*subst(truncate(x^k*Ck),x,x+x^2 +x*O(x^m)));polcoeff(Ck,n-k+1,x)}

Formula

Columns may be generated by a method illustrated by triangles A187005, A187115, and A187120. The main diagonal of triangles A187005, A187115, and A187120, equals columns 0, 1, and 2, respectively.

Extensions

Added cross-reference; example corrected and name changed by Paul D. Hanna, Feb 04 2011

A112317 Coefficients of x^n in the n-th iteration of (x + x^2) for n>=1.

Original entry on oeis.org

1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028, 3479498880, 90230486346, 2584679465160, 81056989408928, 2762187020749144, 101633218030586364, 4015771398425994048, 169588657820702174728
Offset: 1

Views

Author

Paul D. Hanna, Sep 03 2005

Keywords

Comments

Forms a diagonal of the tables A122888 and A185755.

Examples

			The initial iterations of x + x^2 begin:
F(x) = (1)*x + x^2;
F(F(x)) = x + (2)*x^2 + 2*x^3 + x^4;
F(F(F(x))) = x + 3*x^2 + (6)*x^3 + 9*x^4+ 10*x^5+ 8*x^6+ 4*x^7+ x^8;
F(F(F(F(x)))) = x + 4*x^2 + 12*x^3 + (30)*x^4 + 64*x^5 +...;
F(F(F(F(F(x))))) = x + 5*x^2 + 20*x^3 + 70*x^4 + (220)*x^5 +...;
F(F(F(F(F(F(x)))))) = x + 6*x^2 + 30*x^3 + 135*x^4 + 560*x^5 + (2170)*x^6 +...;
where the terms in parenthesis illustrate how to form this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x+x^2, G=x+x*O(x^n));if(n<1,0, for(i=1,n,G=subst(F,x,G));return(polcoeff(G,n,x)))}
    for(n=1, 30, print1(a(n), ", "))

Formula

a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(x+x^2) with F_1(x) = x+x^2.

Extensions

Added cross-references and comments; name and example changed by Paul D. Hanna, Feb 04 2011

A071207 Triangular array T(n,k) read by rows, giving number of rooted trees on the vertex set {1..n+1} where k children of the root have a label smaller than the label of the root.

Original entry on oeis.org

1, 1, 1, 4, 4, 1, 27, 27, 9, 1, 256, 256, 96, 16, 1, 3125, 3125, 1250, 250, 25, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1, 387420489
Offset: 0

Views

Author

Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002

Keywords

Comments

The n-th term of the n-th binomial transform of a sequence {b} is given by {d} where d(n) = sum(k=0,n,T(n,k)*b(k)) and T(n,k)=binomial(n,k)*n^(n-k); such diagonals are related to the hyperbinomial transform (A088956). - Paul D. Hanna, Nov 04 2003
T(n,k) gives the number of divisors of A181555(n) with (n-k) distinct prime factors. See also A001221, A146289, A146290, A181567. - Matthew Vandermast, Oct 31 2010
T(n,k) is the number of partial functions on {1,2,...,n} leaving exactly k elements undefined. Row sums = A000169. - Geoffrey Critzer, Jan 08 2012
As a triangular matrix, transforms rows into diagonals in the table of coefficients of successive iterations of x/(1-x). - Paul D. Hanna, Jan 19 2014
Also the number of rooted trees on n+1 labeled vertices in which some specified vertex (say, vertex 1) has k children. - Alan Sokal, Jul 22 2022

Examples

			1
1     1
4     4     1
27    27    9     1
256   256   96    16    1
3125  3125  1250  250   25    1
46656 46656 19440 4320  540   36    1
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*n^(n-k): seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    Prepend[Flatten[ Table[Table[Binomial[n, k] n^(n - k), {k, 0, n}], {n, 1, 8}]], 1]  (* Geoffrey Critzer, Jan 08 2012 *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,binomial(n,k)*n^(n-k))
    
  • PARI
    /* Transforms rows into diagonals in the iterations of x/(1-x): */
    {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 19 2014

Formula

T(n,k) = binomial(n, k)*n^(n-k).
E.g.f.: (-LambertW(-y)/y)^x/(1+LambertW(-y)). - Vladeta Jovovic

Extensions

Name edited by Alan Sokal, Jul 22 2022

A166905 Triangle, read by rows, that transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Original entry on oeis.org

1, 1, 1, 6, 4, 1, 54, 33, 9, 1, 640, 380, 108, 16, 1, 9380, 5510, 1610, 270, 25, 1, 163576, 95732, 28560, 5148, 570, 36, 1, 3305484, 1933288, 586320, 110929, 13650, 1071, 49, 1, 75915708, 44437080, 13658904, 2677008, 353600, 31624, 1848, 64, 1, 1952409954
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
6,4,1;
54,33,9,1;
640,380,108,16,1;
9380,5510,1610,270,25,1;
163576,95732,28560,5148,570,36,1;
3305484,1933288,586320,110929,13650,1071,49,1;
75915708,44437080,13658904,2677008,353600,31624,1848,64,1;
1952409954,1144564278,355787568,71648322,9962949,973845,66150,2988,81,1;
55573310936,32638644236,10243342296,2107966432,304857190,31795560,2395120,127720,4590,100,1;
...
Coefficients in iterations of x*Catalan(x) form table A158825:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
...
This triangle T transforms rows into diagonals of A158825;
the initial diagonals begin:
A158831: [1,1,6,54,640,9380,163576,3305484,...];
A158832: [1,2,12,110,1330,19852,351792,7209036,...];
A158833: [1,3,20,195,2464,38052,693048,14528217,...];
A158834: [1,4,30,315,4200,67620,1273668,27454218,...].
For example:
T * [1,0,0,0,0,0,0,0,0,0,0,0,0, ...] = A158831;
T * [1,1,2,5,14,42,132,429,1430,...] = A158832;
T * [1,2,6,21,80,322,1348,5814, ...] = A158833;
T * [1,3,12,54,260, 1310, 6824, ...] = A158834.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, G=serreverse(x-x^2+O(x^(n+3))), M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
Showing 1-8 of 8 results.