cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A166900 Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 9, 21, 9, 1, 64, 156, 84, 16, 1, 630, 1540, 935, 230, 25, 1, 7916, 19160, 12480, 3564, 510, 36, 1, 121023, 288813, 196623, 61845, 10465, 987, 49, 1, 2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1, 45179508, 104657520
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Compare to the triangle A071207 that transforms rows into diagonals in the table of iterations of x/(1-x), where A071207(n,k) gives the number of labeled free trees with n vertices and k children of the root that have a label smaller than the label of the root. Does this triangle have a similar interpretation?

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
9, 21, 9, 1;
64, 156, 84, 16, 1;
630, 1540, 935, 230, 25, 1;
7916, 19160, 12480, 3564, 510, 36, 1;
121023, 288813, 196623, 61845, 10465, 987, 49, 1;
2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1;
45179508, 104657520, 74847168, 26415840, 5426949, 695079, 56511, 2844, 81, 1;
1059312264, 2420186616, 1755406674, 642448632, 140247810, 19683060, 1830080, 112520, 4410, 100, 1; ...
Coefficients in self-compositions of (x+x^2) form table A122888:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
This triangle T transforms rows of A122888 into diagonals of A122888;
the initial diagonals begin:
A112319: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
A112317: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028,..];
A112320: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
For example:
T * [1, 0, 0, 0, 0, 0, 0,...]~ = A112319;
T * [1, 1, 0, 0, 0, 0, 0,...]~ = A112317;
T * [1, 2, 2, 1, 0, 0, 0,...]~ = A112320.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A166901 Column 1 of triangle A166900.

Original entry on oeis.org

1, 4, 21, 156, 1540, 19160, 288813, 5123608, 104657520, 2420186616, 62514944778, 1784255891484, 55767065855228, 1894463658611680, 69504774168222109, 2738952451360200312, 115380142451625516088, 5174227834995200591840
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+3, n+3, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); N=matrix(n+2, n+2, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); P=matrix(n+2, n+2, r, c, M[r+1, c]); (P~*N~^-1)[n+2, 2]}

A166902 Column 2 of triangle A166900.

Original entry on oeis.org

1, 9, 84, 935, 12480, 196623, 3591560, 74847168, 1755406674, 45804773872, 1317004696656, 41386864224420, 1411592788770580, 51942256939923051, 2051313029747633376, 86548588478842559964, 3885584044838123386104
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+4, n+4, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+4)))); polcoeff(F, c)); N=matrix(n+3, n+3, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+4)))); polcoeff(F, c)); P=matrix(n+3, n+3, r, c, M[r+1, c]); (P~*N~^-1)[n+3, 3]}

A166904 Row sums of triangle A166900.

Original entry on oeis.org

1, 2, 7, 40, 321, 3361, 43667, 679806, 12358885, 257281501, 6039232167, 157879127902, 4550258562799, 143367509714352, 4903128661348411, 180907738215049666, 7163333648262397913, 303006716530386750233
Offset: 0

Views

Author

Paul D. Hanna, Nov 27 2009

Keywords

Comments

Triangle A166900 transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, M, N, P); M=matrix(n+2, n+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(n+2)))); polcoeff(F, c)); N=matrix(n+1, n+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(n+3)))); polcoeff(F, c)); P=matrix(n+1, n+1, r, c, M[r+1, c]); M=(P~*N~^-1); sum(k=1,n+1,M[n+1,k])}
Showing 1-4 of 4 results.