cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112357 Row sums of A112356.

Original entry on oeis.org

1, 3, 11, 243, 365537, 19304303788473, 1250033478133613116903743692225, 7355069116914166372074595432733192295583026786908016407724348346449
Offset: 0

Views

Author

Amarnath Murthy, Sep 05 2005

Keywords

Comments

Next term, a(8), has 141 digits and is too large to include. - R. J. Mathar, May 19 2006

Crossrefs

Cf. A112356.

Programs

  • PARI
    A112356(n)= { local(resul,piv,a) ; resul=[1] ; piv=2 ; for(col=1,n, a=piv ; piv++ ; for(c=2,binomial(n,col), a *= piv; piv++ ; ) ; resul=concat(resul,a) ; ) ; return(resul) ; }
    A112357(n)= { local(row,rowl); row=A112356(n) ; rowl=matsize(row) ; return(sum(i=1,rowl[2],row[i])) ; }
    { for(row=0,8, print(A112357(row)) ; ) ; } \\ R. J. Mathar, May 19 2006

Extensions

More terms from R. J. Mathar, May 19 2006

A112358 The following triangle is based on Pascal's triangle. The r-th term of the n-th row is sum of C(n,r) successive integers so that the sum of all the terms of the row is (2^n)*(2^n+1)/2, the 2^n -th triangular number. Sequence contains the triangle read by rows.

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 9, 18, 8, 1, 14, 51, 54, 16, 1, 20, 115, 215, 145, 32, 1, 27, 225, 650, 750, 363, 64, 1, 35, 399, 1645, 2870, 2310, 868, 128, 1, 44, 658, 3668, 8995, 10724, 6538, 2012, 256, 1, 54, 1026, 7434, 24381, 40257, 35658, 17442, 4563, 512, 1, 65, 1530, 13980, 59115, 129150, 156135, 109020, 44595, 10185, 1024
Offset: 0

Views

Author

Amarnath Murthy, Sep 05 2005

Keywords

Comments

The leading diagonal contains 2^n.

Examples

			Row for n = 3 is 1, (2+3+4), (5+6+7), 8.
Triangle begins:
  1
  1 2
  1 5 4
  1 9 18 8
  1 14 51 54 16
  ...
		

Crossrefs

Programs

Formula

T(n,0) = 1, T(n,k) = C(A008949(n,k)+1, 2) - C(A008949(n,k-1)+1, 2) = C(n,k)*(A008949(n+1,k)+1)/2 for k>0. - Franklin T. Adams-Watters, Sep 27 2006

Extensions

More terms from Amber Reardon (alr5041(AT)psu.edu) and Vincent M. DelPrince (vmd5003(AT)psu.edu), Oct 04 2005

A112359 Product of n-th row of A112358.

Original entry on oeis.org

1, 2, 20, 1296, 616896, 2294480000, 68803020000000, 16921170978243840000, 34496793424028349312532480, 587395062985562798532990766497792, 84034508984208959408391703340160000000000, 101510206136861741998326287566434701976960000000000
Offset: 0

Views

Author

Amarnath Murthy, Sep 05 2005

Keywords

Crossrefs

Programs

Extensions

More terms from R. J. Mathar, May 08 2007

A112360 Triangle read by rows: T(n,k) is the LCM of all C(n,k) integers from 1 + C(n,0) + C(n,1) + ... + C(n,k-1) to C(n,0) + C(n,1) + ... + C(n,k) (0 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 6, 4, 1, 12, 210, 8, 1, 60, 27720, 5460, 16, 1, 60, 720720, 13385572200, 3398220, 32, 1, 420, 232792560, 219060189739591200, 60218289392461200, 4076731260, 64, 1, 840, 2329089562800, 1182266884102822267511361600
Offset: 0

Views

Author

Amarnath Murthy, Sep 07 2005

Keywords

Comments

Column 1 yields A003418. a(n,n) = 2^n. - Emeric Deutsch, Feb 03 2006

Examples

			Triangle begins:
  1;
  1,  2;
  1,  6,     4;
  1, 12,   210,    8;
  1, 60, 27720, 5460, 16;
  ...
The row for n = 3 is
1....3..........3.......1
1 lcm(2*3*4) lcm(5*6*7) 8 ====> 1 12 210 8.
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 else lcm(seq(j,j=1+sum(binomial(n,i),i=0..k-1)..sum(binomial(n,i),i=0..k))) fi end: for n from 0 to 7 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form - Emeric Deutsch, Feb 03 2006

Extensions

More terms from Emeric Deutsch, Feb 03 2006
Showing 1-4 of 4 results.