A112356 Following triangle is based on Pascal's triangle. The r-th term of the n-th row is product of C(n,r) successive integers such that the product of all the terms of the row is (2^n)!. Sequence contains the triangle read by rows.
1, 1, 2, 1, 6, 4, 1, 24, 210, 8, 1, 120, 332640, 32760, 16, 1, 720, 29059430400, 19275223968000, 20389320, 32, 1, 5040, 223016017416192000, 1250004633476421848894668800000, 28844656968251942737920000, 48920775120, 64
Offset: 0
Examples
Triangle begins: 1 1 2 1 6 4 1 24 210 8 1 120 332640 32760 16 ... The row for n = 3 is 1 3 3 1 1 (2*3*4) (5*6*7) 8 or (1 24 210 8)
Crossrefs
Cf. A112357.
Programs
-
PARI
A112356(n)= { local(resul,piv,a); resul=[1]; piv=2; for(col=1,n, a=piv; piv++; for(c=2,binomial(n,col), a *= piv; piv++; ); resul=concat(resul,a); ); return(resul); } { for(row=0,7, print(A112356(row)); ); } \\ R. J. Mathar, May 19 2006
Extensions
More terms from Mandy Stoner (astoner(AT)ashland.edu), Apr 27 2006
Comments