A112407 Decimal expansion of a semiprime analog of a Ramanujan formula.
7, 5, 4, 4, 9, 9, 7, 0, 1, 7, 0, 9, 5, 1, 4, 0, 7, 8, 3, 5, 5, 7, 1, 8, 1, 6, 8, 9, 5, 0, 5, 4, 1, 9, 8, 7, 0, 2, 5, 0, 7, 7, 6, 4, 4, 3, 5, 8, 7, 2, 2, 3, 3, 8, 9, 0, 9, 9, 7, 9, 9, 1, 6, 4, 2, 8, 4
Offset: 0
Examples
0.75449970170951407835571816895054...
References
- Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.
Links
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514, Table 1, k=s=2.
- Eric Weisstein's World of Mathematics, Infinite Product.
- Eric Weisstein's World of Mathematics, Hyperbolic Cosecant
Programs
-
Mathematica
spQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; p = 1; Do[If[spQ[n], p = N[p*(n^2 - 1)/(n^2 + 1), 64]], {n, 10^6}]; p (* Robert G. Wilson v *) (* This program converges slowly. For {n, 10^6}, only the first 6 digits are correct. - Jason Yuen, Aug 10 2025 *)
-
PARI
A(lim)=my(x=1.);forprime(p=2,lim\2,forprime(q=2,min(p,lim\p),x*=1-2/((p*q)^2+1)));x \\ Charles R Greathouse IV, Aug 15 2011
Formula
Decimal expansion of a = prod[from n = 1 to infinity] (semiprime(n)^2 - 1)/(semiprime(n)^2 + 1) = prod[from n = 1 to infinity] (A001358(n)^2 - 1)/(A001358(n)^2 + 1).
log a = -2*sum_{l=1..infinity} P_2(2*(2l-1))/(2l-1), where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900 [math.NT]. - R. J. Mathar, Jan 27 2009
Extensions
Edited and extended by R. J. Mathar, Jan 27 2009
Comments