cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090986 Decimal expansion of Pi/sinh(Pi).

Original entry on oeis.org

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0
Offset: 0

Views

Author

Benoit Cloitre, Feb 28 2004

Keywords

Comments

Or, decimal expansion of Pi * csch(Pi).

Examples

			0.272029054982133162950236583672...
		

References

  • Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, "Two Products", Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery, Natick, MA: A. K. Peters, 2004, pp. 4-7.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Re[N[Gamma[1+I]*Gamma[1-I], 104]] (* Vaclav Kotesovec, Dec 09 2015 *)
    RealDigits[Pi/Sinh[Pi],10,120][[1]] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    default(realprecision, 100);  Pi/sinh(Pi) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    numerical_approx(pi/sinh(pi), digits=100) # G. C. Greubel, Feb 02 2019

Formula

Equals Pi/sinh(Pi) = Product_{k>=1} k^2/(k^2+1).
Equals Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - Jonathan Vos Post, Dec 07 2005
Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - Vaclav Kotesovec, Dec 10 2015
Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - Peter Bala, Jan 01 2023
Equals A212879^2. - Amiram Eldar, Oct 25 2024

A155799 Decimal expansion of the product_{q=3-almost-primes} (q^2-1)/(q^2+1).

Original entry on oeis.org

9, 2, 5, 8, 5, 7, 2, 7, 4, 7, 1, 2, 8, 9, 3, 1, 2, 7, 9, 9, 8, 8, 8, 2, 1, 3, 8, 2, 0, 7, 1, 5, 8, 4, 1, 5, 2, 7, 8, 4, 5, 0, 2, 1, 8, 1, 9, 1, 9, 6, 6, 0, 2, 1, 5, 3, 2, 7, 6, 5, 6, 6, 2, 0, 2, 9, 5, 6, 7, 4, 4, 6, 8, 1, 0, 7, 1, 2, 4, 7, 5, 7, 0, 3, 9, 6, 4, 4, 8, 6, 6, 8, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 27 2009

Keywords

Comments

The 3-almost-prime analog of A112407. Its logarithm has been computed from -2*sum_{l=1..infinity} P_3(2*(2l-1))/(2l-1) where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

Examples

			0.92585727... = 63/65*143/145*323/325*399/401*364/365*...
		

Crossrefs

Cf. A112407.

Formula

product_{n=1..infinity} (A014612(n)^2-1)/(A014612(n)^2+1).

A385809 Decimal expansion of the Product_{p prime} (p^3-1)/(p^3+1).

Original entry on oeis.org

7, 0, 4, 0, 7, 2, 4, 8, 7, 3, 2, 0, 7, 8, 4, 4, 7, 8, 2, 9, 6, 2, 9, 8, 1, 9, 9, 9, 7, 8, 6, 2, 4, 4, 5, 8, 0, 9, 2, 5, 8, 3, 7, 8, 1, 1, 1, 9, 9, 8, 8, 2, 9, 3, 2, 4, 2, 8, 8, 4, 6, 9, 1, 1, 8, 9, 5, 3, 7, 1, 8, 6, 8, 7, 7, 9, 9, 1, 6, 3, 3, 0, 9, 4, 9, 4, 9, 0, 7, 4, 2, 0, 3, 0, 8, 2, 8, 1, 3, 9, 7, 5, 4, 1, 9, 9, 5, 5, 0, 8
Offset: 0

Views

Author

Artur Jasinski, Aug 01 2025

Keywords

Comments

Product_{p prime} (p^(2*n)-1)/(p^(2*n)+1) are rational numbers A114362(n)/A114363(n) = zeta(4*n)/zeta(2*n)^2.
Product_{p prime} (p^(2*n+1)-1)/(p^(2*n+1)+1) = zeta(2*(2*n+1))/zeta(2*n+1)^2.

Examples

			0.70407248732078447829629819997862445809258378...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[3]^2,10,105][[1]]
  • PARI
    prodeulerrat((p^3-1)/(p^3+1))

Formula

Equals zeta(6)/zeta(3)^2.
Equals 1 / A376742. - Amiram Eldar, Aug 01 2025

Extensions

a(109) corrected by Georg Fischer, Aug 31 2025
Showing 1-3 of 3 results.