cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A156648 Decimal expansion of Product_{k>=1} (1 + 1/k^2).

Original entry on oeis.org

3, 6, 7, 6, 0, 7, 7, 9, 1, 0, 3, 7, 4, 9, 7, 7, 7, 2, 0, 6, 9, 5, 6, 9, 7, 4, 9, 2, 0, 2, 8, 2, 6, 0, 6, 6, 6, 5, 0, 7, 1, 5, 6, 3, 4, 6, 8, 2, 7, 6, 3, 0, 2, 7, 7, 4, 7, 8, 0, 0, 3, 5, 9, 3, 5, 5, 7, 4, 4, 7, 3, 2, 4, 1, 1, 1, 0, 2, 2, 0, 7, 3, 2, 1, 3, 2, 5, 5, 9, 2, 6, 5, 9, 0, 3, 2, 3, 0, 2, 3, 5, 2, 8, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Feb 12 2009

Keywords

Comments

Consider the value at s = 2 of the partition zeta functions zeta_{type}(s), where the defining sum runs over partitions into 'type' parts, where 'type' is 'even', 'prime' or 'distinct'. (For the precise definitions see R. Schneider's dissertation.) Then
zeta_{even}(2) = Pi/2 = A019669;
zeta_{prime}(2) = Pi^2/6 = A013661;
zeta_{distinct}(2) = sinh(Pi)/Pi, this constant. - Peter Luschny, Aug 11 2021
For m>0, Product_{k>=1} (1 + m/k^2) = sinh(Pi*sqrt(m)) / (Pi*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024

Examples

			3.676077910374977720695697492028260666507156346827630277478003593557447324111... = (1+1)*(1+1/4)*(1+1/9)*(1+1/16)*(1+1/25)*...
		

References

  • Reinhold Remmert, Classical topics in complex function theory, Vol. 172 of Graduate Texts in Mathematics, p. 12, Springer, 1997.

Crossrefs

Programs

Formula

Equals sinh(Pi)/Pi.
Equals 1/A090986. - R. J. Mathar, Mar 05 2009
Binomial(2, 1+i) = 1/(i!*(-i)!) (where x! means Gamma(x+1)). - Robert G. Wilson v, Feb 23 2015
Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(2*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{k>=1} (1+2/(k*(k+2))). - Amiram Eldar, Aug 16 2020

A212879 Decimal expansion of the absolute value of i!.

Original entry on oeis.org

5, 2, 1, 5, 6, 4, 0, 4, 6, 8, 6, 4, 9, 3, 9, 8, 4, 1, 1, 5, 8, 1, 8, 0, 2, 6, 9, 6, 2, 8, 1, 9, 0, 0, 5, 3, 8, 5, 6, 4, 0, 5, 6, 7, 8, 2, 7, 7, 8, 9, 5, 6, 3, 1, 9, 2, 5, 5, 6, 8, 1, 2, 2, 4, 4, 4, 2, 4, 8, 6, 9, 5, 2, 3, 6, 2, 2, 8, 0, 8, 1, 6, 5, 4, 1, 1, 2, 7, 4, 9, 3, 6, 6, 7, 5, 2, 4, 1, 0, 9, 6, 6, 5, 3, 7
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also absolute value of Gamma(i).

Examples

			0.5215640468649398411581802696...
		

Crossrefs

Cf. A090986, A212877 (real(i!)), A212878 (-imag(i!)), A212880 (-arg(i!)).

Programs

  • Mathematica
    N[Sqrt[Pi/Sinh[Pi]], 103] (* Vaclav Kotesovec, Dec 10 2015 *)
    RealDigits[Abs[I!], 10, 120][[1]] (* Amiram Eldar, Oct 25 2024 *)
  • PARI
    abs(gamma(I))

Formula

Equals abs(Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals sqrt(Pi/sinh(Pi)). - Vaclav Kotesovec, Dec 10 2015
Equals Product_{k>=1} k/sqrt(k^2+1) = sqrt(A090986). - Amiram Eldar, Oct 25 2024

A212877 Decimal expansion of the real part of i!, where i = sqrt(-1).

Original entry on oeis.org

4, 9, 8, 0, 1, 5, 6, 6, 8, 1, 1, 8, 3, 5, 6, 0, 4, 2, 7, 1, 3, 6, 9, 1, 1, 1, 7, 4, 6, 2, 1, 9, 8, 0, 9, 1, 9, 5, 2, 9, 6, 2, 9, 6, 7, 5, 8, 7, 6, 5, 0, 0, 9, 2, 8, 9, 2, 6, 4, 2, 9, 5, 4, 9, 9, 8, 4, 5, 8, 3, 0, 0, 4, 3, 5, 9, 8, 1, 9, 3, 4, 5, 0, 7, 8, 9, 4, 5, 0, 4, 2, 8, 2, 6, 7, 0, 5, 8, 1, 4, 0, 5, 6, 0, 6
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also the negated imaginary part of Gamma(i).

Examples

			0.498015668118356042713691117462198...
		

Crossrefs

Cf. A212878 (-imag(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

Programs

  • Mathematica
    RealDigits[Re[Gamma[I + 1]], 10, 105] (* T. D. Noe, May 29 2012 *)
  • PARI
    real(I*gamma(I))

Formula

i! = gamma(1+i) = i*gamma(i).
Equals (1/2)*Integral_{x=-1/e..0} LambertW(x)*sin(log(-LambertW(x)))-LambertW(-1,x)*sin(log(-LambertW(-1,x))) dx. - Gleb Koloskov, Oct 01 2021
Equals Integral_{x=0..+oo} exp(-x)*cos(log(x)) dx. - Jianing Song, Sep 27 2023
A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - Vaclav Kotesovec, Dec 28 2023

A212878 Decimal expansion of the negated imaginary part of i!.

Original entry on oeis.org

1, 5, 4, 9, 4, 9, 8, 2, 8, 3, 0, 1, 8, 1, 0, 6, 8, 5, 1, 2, 4, 9, 5, 5, 1, 3, 0, 4, 8, 3, 8, 8, 6, 6, 0, 5, 1, 9, 5, 8, 7, 9, 6, 5, 2, 0, 7, 9, 3, 2, 4, 9, 3, 0, 2, 6, 5, 8, 8, 0, 2, 7, 6, 7, 9, 8, 8, 6, 0, 8, 0, 1, 4, 9, 1, 1, 3, 8, 5, 3, 9, 0, 1, 2, 9, 5, 1, 3, 6, 6, 4, 7, 9, 4, 6, 3, 0, 7, 0, 7, 4, 9, 5, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also the negated real part of Gamma(i).

Examples

			0.15494982830181068512495513048...
		

Crossrefs

Cf. A212877 (real(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

Programs

  • Mathematica
    -Gamma[I] // Re // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, May 13 2013 *)
  • PARI
    -imag(I*gamma(I))

Formula

i! = gamma(1+i) = i*gamma(i).
Equals -Integral_{x=0..+oo} exp(-x)*sin(log(x)) dx. - Jianing Song, Sep 27 2023
A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - Vaclav Kotesovec, Dec 28 2023

A269791 G.f.: Product_{n>=1} 1/(1 - x^n/n^4) = Sum_{n>=0} a(n)*x^n/n!^4.

Original entry on oeis.org

1, 1, 17, 1393, 359200, 224991776, 291968881696, 701412781560352, 2873957814268080128, 18859650596161401139200, 188619789441121624152354816, 2761804817165898231731040301056, 57271995555712767650976765232545792, 1635810412682066454426684822491878391808
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^4 * SeriesCoefficient[Product[1/(1 - x^k/k^4), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=n!^4*polcoeff(prod(k=1, n, 1/(1-x^k/k^4 +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * n!^4, where c = Product_{k>=2} 1/(1-1/k^4) = 4*Pi/sinh(Pi) = 4*A090986 = 1.08811621992853265180094633468815...

A090087 Smallest odd pseudoprimes to base n, not necessarily exceeding n. Compare with A007535 and A090086.

Original entry on oeis.org

9, 341, 91, 15, 217, 35, 25, 9, 91, 9, 15, 65, 21, 15, 341, 15, 9, 25, 9, 21, 55, 21, 33, 25, 39, 9, 65, 9, 15, 49, 15, 25, 85, 15, 9, 35, 9, 39, 95, 39, 15, 205, 21, 9, 133, 9, 65, 49, 15, 21, 25, 51, 9, 55, 9, 15, 25, 57, 15, 341, 15, 9, 341, 9, 33, 65, 33, 25, 35, 69, 9, 85, 9, 15
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k += 2]; k]; Array[a, 100] (* Amiram Eldar, Nov 11 2019 *)

Formula

a(n)=Min{x=odd number; Mod[ -1+n^(x-1), x]=0}

A364355 Decimal expansion of the unique value of x such that Gamma(-x + i*sqrt(1-x^2)) is a real number and -1 < x < 1.

Original entry on oeis.org

5, 4, 1, 9, 7, 9, 8, 7, 1, 6, 9, 4, 8, 9, 0, 6, 0, 2, 4, 4, 3, 3, 2, 2, 7, 8, 7, 7, 9, 0, 9, 0, 4, 6, 8, 8, 0, 5, 5, 8, 2, 4, 2, 8, 0, 2, 9, 2, 7, 9, 3, 8, 4, 2, 7, 9, 5, 6, 1, 4, 5, 5, 1, 9, 4, 0, 0, 0, 0, 8, 1, 5, 8, 6, 3, 9, 1, 7, 2, 7, 4, 4, 0, 4, 6, 0, 2, 1, 5, 2, 1, 1, 5, 1, 5, 5, 5, 8, 8, 4, 8, 5, 5, 6, 6
Offset: 0

Views

Author

Artur Jasinski, Jul 20 2023

Keywords

Comments

Gamma(-A364355 + i*sqrt(1-A364355^2)) = -0.6749332470449905963531... see A364356.
Also decimal expansion of the unique value of x in the range -1 < x < 1 for which the function Re(Gamma(-x + i*sqrt(1-x^2)))/abs(Gamma(-x + i*sqrt(1-x^2))) is minimized.

Examples

			x = 0.54197987169489060244332278779...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Im[Gamma[-x + I Sqrt[1 - x^2]]], {x, 0.5}, WorkingPrecision -> 106]][[1]]

A090088 Smallest even pseudoprimes to odd base=2n-1, not necessarily exceeding n. See also A007535 and A090086, A090087.

Original entry on oeis.org

4, 286, 4, 6, 4, 10, 4, 14, 4, 6, 4, 22, 4, 26, 4, 6, 4, 34, 4, 38, 4, 6, 4, 46, 4, 10, 4, 6, 4, 58, 4, 62, 4, 6, 4, 10, 4, 74, 4, 6, 4, 82, 4, 86, 4, 6, 4, 94, 4, 14, 4, 6, 4, 106, 4, 10, 4, 6, 4, 118, 4, 122, 4, 6, 4, 10, 4, 134, 4, 6, 4, 142, 4, 146, 4, 6, 4, 14, 4, 158, 4, 6, 4, 166, 4, 10
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Comments

For an even base there are no even pseudoprimes.

Examples

			n=2, 2n-2=3 as base, smallest relevant power is -1+2^(286-1) which is divisible by 286.
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 4}, While[PowerMod[2 # - 1, k - 1, k] != 1, k += 2]; k] &, 86] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    A090088(n) = { forstep(k=4, oo, 2, if(1==(Mod(n+n-1, k)^(k-1)), return (k)); ); } \\ (After code in A090086) - Antti Karttunen, Nov 10 2018

Formula

a(n) = Min_{x=even number; (-1 + n^(x-1)) mod x = 0}.

A090089 Smallest even pseudoprimes to odd base=4n-1, not necessarily exceeding n.

Original entry on oeis.org

286, 6, 10, 14, 6, 22, 26, 6, 34, 38, 6, 46, 10, 6, 58, 62, 6, 10, 74, 6, 82, 86, 6, 94, 14, 6, 106, 10, 6, 118, 122, 6, 10, 134, 6, 142, 146, 6, 14, 158, 6, 166, 10, 6, 178, 14, 6, 10, 194, 6, 202, 206, 6, 214, 218, 6, 226, 10, 6, 14, 22, 6, 10, 254, 6, 262, 14, 6, 274, 278, 6
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Comments

There are no even pseudoprimes to an even base.

Examples

			n=1: base = 4n-1=3, smallest relevant power is -1+2^(286-1) which is divisible by 286.
Sieving further residue classes, smallest regularly arising pseudoprimes are 6,10 etc..
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 2}, While[GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k += 2]; k]; Table[a[4*n - 1], {n, 1, 100}] (* Amiram Eldar, Nov 11 2019 *)

Formula

a(n)=Min{x=4n-1 number; Mod[ -1+n^(x-1), x]=0}

A112407 Decimal expansion of a semiprime analog of a Ramanujan formula.

Original entry on oeis.org

7, 5, 4, 4, 9, 9, 7, 0, 1, 7, 0, 9, 5, 1, 4, 0, 7, 8, 3, 5, 5, 7, 1, 8, 1, 6, 8, 9, 5, 0, 5, 4, 1, 9, 8, 7, 0, 2, 5, 0, 7, 7, 6, 4, 4, 3, 5, 8, 7, 2, 2, 3, 3, 8, 9, 0, 9, 9, 7, 9, 9, 1, 6, 4, 2, 8, 4
Offset: 0

Views

Author

Jonathan Vos Post, Dec 21 2005

Keywords

Comments

This is related to Ramanujan's surprising formula: Prod[from n = 1 to infinity] (prime(n)^2 - 1)/ (prime(n)^2 + 1) = 2/5 and we use it in finding A112407 as the semiprime analog. We also use: A090986 = Decimal expansion of Pi csch Pi = Prod[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1).
Since every integer above 1 is a k-almost prime for some k, we factor the (n^2 - 1)/(n^2 + 1) infinite product and use Ramanujan's formula, to have: Prod[from n = 1 to infinity] (prime(n)^2-1)/(prime(n)^2+1) * Prod[from n = 1 to infinity] (semiprime(n)^2 - 1)/(semiprime(n)^2 + 1) * Prod[from n = 1 to infinity] (3-almostprime(n)^2 - 1)/ (3-almostprime(n)^2 + 1) * ... * Prod[from n = 1 to infinity] (k-almostprime(n)^2 - 1)/ (k-almostprime(n)^2 + 1) * ... = Prod[from n = 2 to infinity] (n^2 - 1)/(n^2 + 1) = pi csch pi as each integer appear once and only once in numerator and once and only once in denominator.
2/5 is the first (Ramanujan, prime) term in this infinite product of infinite products. This here is the second (semiprime) term. A155799 is the third (3-almost prime) term. All of these have slow convergence.

Examples

			0.75449970170951407835571816895054...
		

References

  • Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Natick, MA: A. K. Peters, pp. 4-7, 2004.

Crossrefs

Programs

  • Mathematica
    spQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; p = 1; Do[If[spQ[n], p = N[p*(n^2 - 1)/(n^2 + 1), 64]], {n, 10^6}]; p (* Robert G. Wilson v *) (* This program converges slowly. For {n, 10^6}, only the first 6 digits are correct. - Jason Yuen, Aug 10 2025 *)
  • PARI
    A(lim)=my(x=1.);forprime(p=2,lim\2,forprime(q=2,min(p,lim\p),x*=1-2/((p*q)^2+1)));x \\ Charles R Greathouse IV, Aug 15 2011

Formula

Decimal expansion of a = prod[from n = 1 to infinity] (semiprime(n)^2 - 1)/(semiprime(n)^2 + 1) = prod[from n = 1 to infinity] (A001358(n)^2 - 1)/(A001358(n)^2 + 1).
log a = -2*sum_{l=1..infinity} P_2(2*(2l-1))/(2l-1), where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900 [math.NT]. - R. J. Mathar, Jan 27 2009

Extensions

Edited and extended by R. J. Mathar, Jan 27 2009
Showing 1-10 of 28 results. Next