cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A090986 Decimal expansion of Pi/sinh(Pi).

Original entry on oeis.org

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0
Offset: 0

Views

Author

Benoit Cloitre, Feb 28 2004

Keywords

Comments

Or, decimal expansion of Pi * csch(Pi).

Examples

			0.272029054982133162950236583672...
		

References

  • Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, "Two Products", Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery, Natick, MA: A. K. Peters, 2004, pp. 4-7.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Re[N[Gamma[1+I]*Gamma[1-I], 104]] (* Vaclav Kotesovec, Dec 09 2015 *)
    RealDigits[Pi/Sinh[Pi],10,120][[1]] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    default(realprecision, 100);  Pi/sinh(Pi) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    numerical_approx(pi/sinh(pi), digits=100) # G. C. Greubel, Feb 02 2019

Formula

Equals Pi/sinh(Pi) = Product_{k>=1} k^2/(k^2+1).
Equals Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - Jonathan Vos Post, Dec 07 2005
Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - Vaclav Kotesovec, Dec 10 2015
Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - Peter Bala, Jan 01 2023
Equals A212879^2. - Amiram Eldar, Oct 25 2024

A212880 Decimal expansion of the negated argument of i!.

Original entry on oeis.org

3, 0, 1, 6, 4, 0, 3, 2, 0, 4, 6, 7, 5, 3, 3, 1, 9, 7, 8, 8, 7, 5, 3, 1, 6, 5, 7, 7, 9, 6, 8, 9, 6, 5, 4, 0, 6, 5, 9, 8, 9, 9, 7, 7, 3, 9, 4, 3, 7, 6, 5, 2, 3, 6, 9, 4, 0, 7, 4, 4, 0, 0, 5, 3, 8, 3, 0, 6, 0, 5, 8, 1, 4, 3, 9, 5, 0, 2, 9, 5, 3, 3, 9, 9, 8, 9, 8, 2, 2, 6, 9, 7, 2, 7, 9, 5, 0, 1, 1, 9, 4, 2, 3, 4, 4
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

The value is in radians.

Examples

			0.30164032046753319788753165779...
		

Crossrefs

Cf. A212877 (real(i!)), A212878 (-imag(i!)), A212879 (abs(i!)).
Cf. A001620 (gamma), A352619.

Programs

Formula

Equals -arg(i*Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals lim_{n->infinity} ((Sum_{k=1..n} arctan(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals arctan(A212878/A212877). - Vaclav Kotesovec, Dec 10 2015
From Amiram Eldar, Jun 12 2021: (Start)
Equals 1 - Integral_{x=0..Pi/2} frac(cot(x)) dx, where frac(x) = x - floor(x) is the fractional part of x.
Equals gamma - Sum_{k>=1} (-1)^(k+1)*zeta(2*k+1)/(2*k+1) = A001620 - A352619.
Both formulae are from Vălean (2018). (End)
Equals log((Gamma(1-i)/Gamma(1+i))^(-i/2)). - Vaclav Kotesovec, Jun 12 2021

A212877 Decimal expansion of the real part of i!, where i = sqrt(-1).

Original entry on oeis.org

4, 9, 8, 0, 1, 5, 6, 6, 8, 1, 1, 8, 3, 5, 6, 0, 4, 2, 7, 1, 3, 6, 9, 1, 1, 1, 7, 4, 6, 2, 1, 9, 8, 0, 9, 1, 9, 5, 2, 9, 6, 2, 9, 6, 7, 5, 8, 7, 6, 5, 0, 0, 9, 2, 8, 9, 2, 6, 4, 2, 9, 5, 4, 9, 9, 8, 4, 5, 8, 3, 0, 0, 4, 3, 5, 9, 8, 1, 9, 3, 4, 5, 0, 7, 8, 9, 4, 5, 0, 4, 2, 8, 2, 6, 7, 0, 5, 8, 1, 4, 0, 5, 6, 0, 6
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also the negated imaginary part of Gamma(i).

Examples

			0.498015668118356042713691117462198...
		

Crossrefs

Cf. A212878 (-imag(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

Programs

  • Mathematica
    RealDigits[Re[Gamma[I + 1]], 10, 105] (* T. D. Noe, May 29 2012 *)
  • PARI
    real(I*gamma(I))

Formula

i! = gamma(1+i) = i*gamma(i).
Equals (1/2)*Integral_{x=-1/e..0} LambertW(x)*sin(log(-LambertW(x)))-LambertW(-1,x)*sin(log(-LambertW(-1,x))) dx. - Gleb Koloskov, Oct 01 2021
Equals Integral_{x=0..+oo} exp(-x)*cos(log(x)) dx. - Jianing Song, Sep 27 2023
A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - Vaclav Kotesovec, Dec 28 2023

A212878 Decimal expansion of the negated imaginary part of i!.

Original entry on oeis.org

1, 5, 4, 9, 4, 9, 8, 2, 8, 3, 0, 1, 8, 1, 0, 6, 8, 5, 1, 2, 4, 9, 5, 5, 1, 3, 0, 4, 8, 3, 8, 8, 6, 6, 0, 5, 1, 9, 5, 8, 7, 9, 6, 5, 2, 0, 7, 9, 3, 2, 4, 9, 3, 0, 2, 6, 5, 8, 8, 0, 2, 7, 6, 7, 9, 8, 8, 6, 0, 8, 0, 1, 4, 9, 1, 1, 3, 8, 5, 3, 9, 0, 1, 2, 9, 5, 1, 3, 6, 6, 4, 7, 9, 4, 6, 3, 0, 7, 0, 7, 4, 9, 5, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also the negated real part of Gamma(i).

Examples

			0.15494982830181068512495513048...
		

Crossrefs

Cf. A212877 (real(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

Programs

  • Mathematica
    -Gamma[I] // Re // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, May 13 2013 *)
  • PARI
    -imag(I*gamma(I))

Formula

i! = gamma(1+i) = i*gamma(i).
Equals -Integral_{x=0..+oo} exp(-x)*sin(log(x)) dx. - Jianing Song, Sep 27 2023
A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - Vaclav Kotesovec, Dec 28 2023

A364355 Decimal expansion of the unique value of x such that Gamma(-x + i*sqrt(1-x^2)) is a real number and -1 < x < 1.

Original entry on oeis.org

5, 4, 1, 9, 7, 9, 8, 7, 1, 6, 9, 4, 8, 9, 0, 6, 0, 2, 4, 4, 3, 3, 2, 2, 7, 8, 7, 7, 9, 0, 9, 0, 4, 6, 8, 8, 0, 5, 5, 8, 2, 4, 2, 8, 0, 2, 9, 2, 7, 9, 3, 8, 4, 2, 7, 9, 5, 6, 1, 4, 5, 5, 1, 9, 4, 0, 0, 0, 0, 8, 1, 5, 8, 6, 3, 9, 1, 7, 2, 7, 4, 4, 0, 4, 6, 0, 2, 1, 5, 2, 1, 1, 5, 1, 5, 5, 5, 8, 8, 4, 8, 5, 5, 6, 6
Offset: 0

Views

Author

Artur Jasinski, Jul 20 2023

Keywords

Comments

Gamma(-A364355 + i*sqrt(1-A364355^2)) = -0.6749332470449905963531... see A364356.
Also decimal expansion of the unique value of x in the range -1 < x < 1 for which the function Re(Gamma(-x + i*sqrt(1-x^2)))/abs(Gamma(-x + i*sqrt(1-x^2))) is minimized.

Examples

			x = 0.54197987169489060244332278779...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Im[Gamma[-x + I Sqrt[1 - x^2]]], {x, 0.5}, WorkingPrecision -> 106]][[1]]

A365317 Decimal expansion of real part of Gamma(exp(i*Pi/3)).

Original entry on oeis.org

3, 7, 9, 8, 0, 4, 8, 9, 1, 7, 9, 1, 3, 9, 0, 1, 5, 6, 9, 9, 1, 7, 9, 7, 0, 5, 1, 3, 4, 1, 6, 2, 3, 6, 2, 7, 6, 8, 9, 1, 2, 7, 0, 3, 5, 1, 9, 2, 7, 4, 2, 8, 5, 2, 0, 3, 5, 8, 9, 1, 9, 7, 6, 9, 7, 7, 8, 4, 6, 7, 4, 7, 8, 3, 5, 8, 6, 1, 4, 4, 5, 0, 8, 4, 6, 7, 1, 7, 8, 3, 0, 8, 3, 1, 8, 6, 3, 2, 2, 0, 9, 8, 7, 9, 0, 9
Offset: 0

Views

Author

Artur Jasinski, Sep 01 2023

Keywords

Comments

For imaginary part of Gamma(exp(i*Pi/3)) see A365318.
For abs(Gamma(exp(i*Pi/3))) see A365319.

Examples

			0.37980489179139...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]] Cos[2 RiemannSiegelTheta[Sqrt[3]/2] + ArcTan[Tanh[Pi Sqrt[3]/4]] + Sqrt[3] Log[2 Pi]/2], 10, 106][[1]]
  • PARI
    real(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023

Formula

Equals sqrt(Pi*sech(Pi*sqrt(3)/2))*cos(2*theta(sqrt(3)/2)+(sqrt(3)/2)*log(2*Pi)+arctan(tanh(Pi*sqrt(3)/4))) where theta is Riemann-Siegel theta function.

A365318 Decimal expansion of negative imaginary part of Gamma(exp(i*Pi/3)).

Original entry on oeis.org

5, 1, 7, 2, 7, 9, 0, 9, 9, 4, 7, 4, 8, 4, 0, 1, 5, 1, 5, 9, 3, 3, 2, 3, 5, 0, 1, 7, 1, 5, 4, 1, 9, 0, 7, 2, 2, 1, 8, 4, 7, 0, 9, 0, 3, 3, 1, 4, 1, 7, 5, 9, 0, 8, 7, 9, 8, 3, 2, 3, 2, 2, 6, 4, 4, 9, 9, 0, 0, 3, 6, 0, 0, 3, 2, 7, 5, 1, 7, 7, 5, 8, 6, 8, 0, 1, 6, 4, 2, 2, 6, 3, 6, 1, 1, 6, 1, 1, 1, 0, 9, 6, 6, 0, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Sep 01 2023

Keywords

Examples

			0.51727909947484...
Gamma(cos(Pi/3) + I*sin(Pi/3)) = 0.37980489179139...-I*0.51727909947484...
		

Crossrefs

Cf. A365317 (real part), A365319 (abs).

Programs

  • Mathematica
    RealDigits[-Im[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]] Sin[2 RiemannSiegelTheta[Sqrt[3]/2] + ArcTan[Tanh[Pi Sqrt[3]/4]] + Sqrt[3] Log[2 Pi]/2], 10, 106][[1]]
  • PARI
    -imag(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023

Formula

Equals sqrt(Pi*sech(Pi*sqrt(3)/2))*sin(2*theta(sqrt(3)/2)+(sqrt(3)/2)*log(2*Pi)+arctan(tanh(Pi*sqrt(3)/4))) where theta is Riemann-Siegel theta function.

A364356 Decimal expansion of negative value of function Gamma(-A364355 + i*sqrt(1-A364355^2)).

Original entry on oeis.org

6, 7, 4, 9, 3, 3, 2, 4, 7, 0, 4, 4, 9, 9, 0, 5, 9, 6, 3, 5, 3, 1, 0, 0, 4, 4, 6, 9, 5, 4, 7, 2, 2, 1, 6, 4, 2, 5, 3, 7, 4, 9, 7, 5, 6, 2, 7, 7, 8, 7, 6, 6, 1, 1, 9, 2, 8, 7, 3, 0, 3, 2, 8, 9, 4, 1, 0, 6, 4, 8, 6, 5, 9, 1, 9, 3, 3, 5, 3, 9, 9, 3, 9, 1, 4, 4, 2, 1, 3, 1, 4, 1, 5, 6, 8, 0, 9, 1, 6, 2, 0, 6, 7, 9, 7
Offset: 0

Views

Author

Artur Jasinski, Aug 08 2023

Keywords

Comments

Only for x = A364355 = 0.54197987169489060244332278779... the Gamma(-x + i*sqrt(1-x^2)) is a real number and -1 < x < 1 (for one case is an imaginary number see A364821 and for other values x is a complex number).

Examples

			Gamma(-A364355 + i*sqrt(1-A364355^2)) = -0.6749332470449905963531...
		

Crossrefs

Programs

  • Mathematica
    xmin=x /. FindRoot[Im[Gamma[-x + I Sqrt[1 - x^2]]], {x, 0.5}, WorkingPrecision -> 106];RealDigits[Re[-Gamma[-x + I Sqrt[1 - x^2]]/. x->xmin]][[1]]

A364821 Decimal expansion of the unique value of x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.

Original entry on oeis.org

1, 4, 9, 9, 6, 5, 9, 7, 4, 6, 0, 6, 4, 9, 1, 0, 8, 9, 8, 5, 3, 0, 9, 7, 0, 5, 3, 6, 6, 4, 1, 4, 5, 7, 3, 6, 6, 8, 7, 4, 1, 8, 4, 1, 0, 2, 3, 9, 9, 6, 9, 7, 4, 2, 9, 1, 1, 7, 8, 3, 1, 4, 7, 5, 5, 9, 8, 7, 2, 4, 7, 9, 7, 8, 9, 3, 9, 0, 2, 7, 0, 7, 3, 4, 1, 4, 6, 4, 6, 4, 2, 5, 3, 6, 5, 3, 0, 0, 8, 1, 0, 3, 6, 5, 8, 2
Offset: 0

Views

Author

Artur Jasinski, Oct 07 2023

Keywords

Comments

Gamma(A364821 + i*sqrt(1-A364821^2)) = -i*0.5377003887835295919... see A366345.
Also decimal expansion of the unique value of x in the range -1 < x < 1 for which the function Im(Gamma(x + i*sqrt(1-x^2)))/abs(Gamma(x + i*sqrt(1-x^2))) is minimized.

Examples

			0.149965974606491...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[
      x /. FindRoot[Re[Gamma[x + I Sqrt[1 - x^2]]], {x, 0.15},
        WorkingPrecision -> 106]][[1]]

Extensions

Last digit corrected by Vaclav Kotesovec, Sep 02 2025

A365319 Decimal expansion of abs(Gamma(exp(i*Pi/3))).

Original entry on oeis.org

6, 4, 1, 7, 3, 9, 3, 7, 2, 7, 8, 4, 7, 5, 5, 3, 2, 1, 5, 3, 8, 7, 3, 4, 3, 8, 8, 4, 1, 2, 2, 1, 4, 0, 3, 6, 1, 6, 8, 9, 2, 2, 9, 9, 1, 1, 6, 5, 3, 1, 6, 5, 9, 4, 0, 0, 8, 9, 4, 8, 4, 7, 6, 9, 3, 9, 8, 9, 0, 1, 3, 5, 5, 2, 9, 0, 3, 7, 4, 6, 4, 4, 2, 4, 7, 9, 5, 6, 1, 5, 3, 3, 8, 9, 0, 7, 4, 7, 1, 9, 8, 8, 9, 2, 5, 5
Offset: 0

Views

Author

Artur Jasinski, Sep 01 2023

Keywords

Comments

Also abs(Gamma(exp(i*2*Pi/3))).
For real part of Gamma(exp(i*Pi/3)) see A365317.
For negative imaginary part of Gamma(exp(i*Pi/3)) see A365318.

Examples

			0.641739372784755...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Abs[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]], 10, 106][[1]]
  • PARI
    abs(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023

Formula

Equals sqrt(Pi/cosh(Pi*sqrt(3)/2)).
Equals 1/sqrt(3*A109219).
Showing 1-10 of 12 results. Next