A365318 Decimal expansion of negative imaginary part of Gamma(exp(i*Pi/3)).
5, 1, 7, 2, 7, 9, 0, 9, 9, 4, 7, 4, 8, 4, 0, 1, 5, 1, 5, 9, 3, 3, 2, 3, 5, 0, 1, 7, 1, 5, 4, 1, 9, 0, 7, 2, 2, 1, 8, 4, 7, 0, 9, 0, 3, 3, 1, 4, 1, 7, 5, 9, 0, 8, 7, 9, 8, 3, 2, 3, 2, 2, 6, 4, 4, 9, 9, 0, 0, 3, 6, 0, 0, 3, 2, 7, 5, 1, 7, 7, 5, 8, 6, 8, 0, 1, 6, 4, 2, 2, 6, 3, 6, 1, 1, 6, 1, 1, 1, 0, 9, 6, 6, 0, 9, 2
Offset: 0
Examples
0.51727909947484... Gamma(cos(Pi/3) + I*sin(Pi/3)) = 0.37980489179139...-I*0.51727909947484...
Links
- Juan Arias de Reyna and Jan van de Lune, 2013, On the exact location of the non-trivial zeros of Riemann's zeta function, arXiv:1305.3844 [math.NT], 2013, formula (4).
- Eric Weisstein's World of Mathematics, Riemann-Siegel Functions.
- Wikipedia, Riemann-Siegel theta function.
Programs
-
Mathematica
RealDigits[-Im[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]] (* or *) RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]] Sin[2 RiemannSiegelTheta[Sqrt[3]/2] + ArcTan[Tanh[Pi Sqrt[3]/4]] + Sqrt[3] Log[2 Pi]/2], 10, 106][[1]]
-
PARI
-imag(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023
Formula
Equals sqrt(Pi*sech(Pi*sqrt(3)/2))*sin(2*theta(sqrt(3)/2)+(sqrt(3)/2)*log(2*Pi)+arctan(tanh(Pi*sqrt(3)/4))) where theta is Riemann-Siegel theta function.
Comments