cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112421 Number of 6 element subsets of {1,2,3,...,n} for which the sum-set has 12 elements.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, 60, 66, 72, 80, 88, 96, 104, 112, 120, 130, 140, 150, 160, 170, 180, 192, 204, 216, 228, 240, 252, 266, 280, 294, 308, 322, 336, 352, 368, 384, 400, 416, 432, 450, 468, 486, 504, 522, 540, 560, 580, 600
Offset: 7

Views

Author

David S. Newman, Dec 10 2005

Keywords

Examples

			a(7)=2 because the two sets {1 2 3 4 5 7} and {1 3 4 5 6 7} have sum-sets
{2 3 4 5 6 7 8 9 10 11 12 14} and {2 4 5 6 7 8 9 10 11 12 13 14}, respectively and each of these sum-sets has 12 elements.
		

Crossrefs

Cf. A008724.

Programs

  • Magma
    I:=[2,4,6,8,10,12,16,20]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-6)-2*Self(n-7)+Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2013
  • Mathematica
    CoefficientList[Series[2/((1 - x)^2 (1 - x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 21 2013 *)
  • PARI
    lista(n) = {my(x = xx + O(xx^n)); gf = 2*x^7/((1-x)^2*(1-x^6)); for (i=7, n-1, print1(polcoeff(gf, i, xx), ", "));} \\ - Michel Marcus, Dec 20 2013
    

Formula

G.f.: 2*x^7/((1-x)^2*(1-x^6)).
a(n) = 2*A008724(n-3). a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8). - R. J. Mathar, Jul 26 2010
a(n) = 2*j*(n-3*j-3), where j=floor(n/6). - Jon E. Schoenfield, Dec 20 2013

Extensions

More terms from Jon E. Schoenfield, Dec 20 2013