A112421 Number of 6 element subsets of {1,2,3,...,n} for which the sum-set has 12 elements.
2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, 60, 66, 72, 80, 88, 96, 104, 112, 120, 130, 140, 150, 160, 170, 180, 192, 204, 216, 228, 240, 252, 266, 280, 294, 308, 322, 336, 352, 368, 384, 400, 416, 432, 450, 468, 486, 504, 522, 540, 560, 580, 600
Offset: 7
Examples
a(7)=2 because the two sets {1 2 3 4 5 7} and {1 3 4 5 6 7} have sum-sets {2 3 4 5 6 7 8 9 10 11 12 14} and {2 4 5 6 7 8 9 10 11 12 13 14}, respectively and each of these sum-sets has 12 elements.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 7..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
Crossrefs
Cf. A008724.
Programs
-
Magma
I:=[2,4,6,8,10,12,16,20]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-6)-2*Self(n-7)+Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2013
-
Mathematica
CoefficientList[Series[2/((1 - x)^2 (1 - x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 21 2013 *)
-
PARI
lista(n) = {my(x = xx + O(xx^n)); gf = 2*x^7/((1-x)^2*(1-x^6)); for (i=7, n-1, print1(polcoeff(gf, i, xx), ", "));} \\ - Michel Marcus, Dec 20 2013
Formula
G.f.: 2*x^7/((1-x)^2*(1-x^6)).
a(n) = 2*A008724(n-3). a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8). - R. J. Mathar, Jul 26 2010
a(n) = 2*j*(n-3*j-3), where j=floor(n/6). - Jon E. Schoenfield, Dec 20 2013
Extensions
More terms from Jon E. Schoenfield, Dec 20 2013