A112497 Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
105, 2205, 26775, 247555, 1939630, 13609310, 88346258, 541831290, 3184396215, 18114492851, 100467071393, 546227989621, 2923225973476, 15447710150460, 80807432442660, 419245751359380, 2160664798858005, 11075023230179865
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (35, -560, 5432, -35714, 168542, -589632, 1556776, -3126949, 4777591, -5506936, 4703032, -2881136, 1195632, -300672, 34560).
Programs
-
Mathematica
CoefficientList[Series[(105 - 1470*x + 8400*x^2 - 25130*x^3 + 41615*x^4 - 36280*x^5 + 13048*x^6)/Product[(1 - j*x)^(6 - j), {j, 1, 5}], {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
-
PARI
x='x+O('x^50); Vec((105 -1470*x +8400*x^2 -25130*x^3 +41615*x^4 -36280*x^5 +13048*x^6)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x))) \\ G. C. Greubel, Nov 13 2017
Formula
G.f.: (105-1470*x+8400*x^2-25130*x^3+41615*x^4-36280*x^5+13048*x^6) / product((1-j*x)^(6-j), j=1..5).
a(n) = 5*a(n-1) + (n+7)*A112496(n).