A112519 Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 4, 0, 1, 0, 12, 2, 6, 0, 1, 0, 14, 28, 3, 8, 0, 1, 0, 100, 32, 48, 4, 10, 0, 1, 0, 180, 249, 54, 72, 5, 12, 0, 1, 0, 990, 440, 455, 80, 100, 6, 14, 0, 1, 0, 2310, 2552, 792, 726, 110, 132, 7, 16, 0, 1, 0, 10920, 5876, 4836, 1248, 1070, 144, 168, 8, 18, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 0, 1; 0, 2, 0, 1; 0, 1, 4, 0, 1; 0, 12, 2, 6, 0, 1; 0, 14, 28, 3, 8, 0, 1; 0, 100, 32, 48, 4, 10, 0, 1; 0, 180, 249, 54, 72, 5, 12, 0, 1; 0, 990, 440, 455, 80, 100, 6, 14, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >; [A112519(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
-
Mathematica
(* First program *) c[x_]:= (1 - Sqrt[1-4x])/(2x); (* The function RiordanArray is defined in A256893. *) RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *) (* Second program *) T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
-
Sage
@CachedFunction def A112519(n,k): if (k==n): return 1 else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) ) flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022
Formula
Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).
T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.
T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - G. C. Greubel, Jan 12 2022
Comments