cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112519 Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 4, 0, 1, 0, 12, 2, 6, 0, 1, 0, 14, 28, 3, 8, 0, 1, 0, 100, 32, 48, 4, 10, 0, 1, 0, 180, 249, 54, 72, 5, 12, 0, 1, 0, 990, 440, 455, 80, 100, 6, 14, 0, 1, 0, 2310, 2552, 792, 726, 110, 132, 7, 16, 0, 1, 0, 10920, 5876, 4836, 1248, 1070, 144, 168, 8, 18, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 09 2005

Keywords

Comments

Row sums are A112520. Second column is essentially A055392. Inverse is A112517. Riordan array product (1, x*c(x))*(1, x*c(-x)).

Examples

			Triangle begins
  1;
  0,   1;
  0,   0,   1;
  0,   2,   0,   1;
  0,   1,   4,   0,  1;
  0,  12,   2,   6,  0,   1;
  0,  14,  28,   3,  8,   0,  1;
  0, 100,  32,  48,  4,  10,  0,  1;
  0, 180, 249,  54, 72,   5, 12,  0, 1;
  0, 990, 440, 455, 80, 100,  6, 14, 0, 1;
		

Crossrefs

Programs

  • Magma
    A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;
    [A112519(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
    
  • Mathematica
    (* First program *)
    c[x_]:= (1 - Sqrt[1-4x])/(2x);
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
    (* Second program *)
    T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
  • Sage
    @CachedFunction
    def A112519(n,k):
        if (k==n): return 1
        else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )
    flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022

Formula

Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).
T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.
T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - G. C. Greubel, Jan 12 2022