A112528 Number of representations of n-th prime of the form p1*p2+p3, where p1, p2 and p3 are primes, not necessarily all distinct.
0, 0, 0, 1, 3, 2, 5, 2, 4, 4, 2, 5, 6, 4, 4, 6, 4, 3, 6, 5, 4, 6, 4, 8, 7, 6, 5, 6, 6, 9, 6, 7, 8, 5, 8, 6, 7, 10, 5, 9, 8, 6, 6, 7, 10, 7, 9, 9, 6, 9, 12, 11, 7, 8, 11, 8, 11, 8, 11, 12, 9, 11, 13, 9, 10, 14, 13, 13, 7, 9, 12, 12, 12, 14, 11, 11, 15, 13, 15, 12, 13, 9, 12, 12, 13, 14, 13, 14, 13
Offset: 1
Keywords
Examples
No solutions for 2,3,5; 7=2*2+3, 11=2*2+7=2*3+5=3*3+2, 13=2*3+7=2*5+3, 17=2*2+13=2*3+11=2*5+7=2*7+3=3*5+2, 19=2*3+13, 23=2*2+19=2*3+17=2*5+13=3*7+2, 29=2*3+23=2*5+19=2*11+7=2*13+3, 31=2*7+17=2*13+5, ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Function[q, Length@ DeleteCases[#, s_ /; Length@s != 3] &@ Map[Flatten[ FactorInteger[#] /. {{p_, e_} /; p > 1 :> ConstantArray[p, e], {1, 1} -> 1}] &, Select[IntegerPartitions[q, {2}], And[! MemberQ[#, 1], Total@ Boole@ PrimeQ@ # == 1] &]]]@ Prime@ n, {n, 89}] (* Michael De Vlieger, May 01 2017 *)
Extensions
More terms from Reinhard Zumkeller, Sep 22 2005
Comments