cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113567 Numbers n such that prime(n) +- n, prime(n) +- 2n and prime(n) +- 3n are all primes.

Original entry on oeis.org

252420, 874650, 1413510, 2053380, 2298240, 2456160, 4640370, 7529340, 8708910, 11205390, 18734310, 22141980, 23680650, 26407920, 30866010, 31340400, 38515050, 43242780, 44584260, 58430400, 61172790, 62739180, 64449210
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; p = 2*3*5*7; Do[ If[ PrimeQ[Prime[p*n] - p*3n] && PrimeQ[Prime[p*n] - p*2n] && PrimeQ[Prime[p*n] - p*n] && PrimeQ[Prime[p*n] + p*n] && PrimeQ[Prime[p*n] + p*2n] && PrimeQ[Prime[p*n] + p*3n], AppendTo[t, n]], {n, 2194723}]; p*t

A113568 Numbers k such that prime(k) +- k, prime(k) +- 2k, prime(k) +- 3k and prime(k) +- 4k are all primes.

Original entry on oeis.org

2053380, 794006430, 1659273630, 3621510480, 3725013180, 4361365470, 4993201710, 7311363150, 7865614680, 9934880340, 10608361260, 12818200500, 13499311980, 13940598420, 14241904320, 14463052170, 14601895770, 18668815620, 19102545000, 20336611050, 20706006090, 21322649670, 22595831580
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; p = 2*3*5*7; Do[ If[ PrimeQ[Prime[p*n] - p*3n] && PrimeQ[Prime[p*n] - p*2n] && PrimeQ[Prime[p*n] - p*n] && PrimeQ[Prime[p*n] + p*n] && PrimeQ[Prime[p*n] + p*2n] && PrimeQ[Prime[p*n] + p*3n], AppendTo[t, n]], {n, 17 106}]; p*t
  • PARI
    list(lim) = {my(k = 0, q); forprime(p = 1, lim, k++; q = 1; for(i = -4, 4, if(i != 0 && !isprime(p + i*k), q = 0; break)); if(q, print1(k,", ")));} \\ Amiram Eldar, Jul 12 2025

Extensions

a(4)-a(23) from Amiram Eldar, Jul 12 2025

A113569 Least number k such that k is a multiple of A034386(2*n) and p-(n-1)*k, p-(n-2)*k, ... p-2*k, p-k, p, p+k, p+2*k, ... p+(n-2)*k, and p+(n-1)*k are all prime, with p being the k-th prime.

Original entry on oeis.org

2, 6, 720, 252420, 2053380
Offset: 1

Views

Author

Robert G. Wilson v, Sep 10 2005

Keywords

Comments

Without the condition that k must be a multiple of A034386(2*n), we would have a(1) = 1 and a(2) = 4. - Pontus von Brömssen, Jun 25 2025

Examples

			a(1) = 2 which is a multiple of the primorial A034386(2) = 2.
a(2) = 6 because p = 13, p-6 = 7, and p+6 = 19 are all prime and 6 is a multiple of A034386(4) = 6.
a(3) = 720 because p = 5443, p-720 = 4723, p-2*720 = 4003, p+720 = 6163, and p+2*720 = 6883 are all prime and 720 is a multiple of A034386(6) = 30.
		

Crossrefs

Extensions

Edited by Pontus von Brömssen, Jun 25 2025
Showing 1-3 of 3 results.