A112541 a(n) = Sum_{k=0..n} (n-k)! * n^k.
1, 2, 8, 48, 400, 4390, 60624, 1013404, 19881728, 447085170, 11319529600, 318298578664, 9834869311488, 331059072378814, 12055438037135360, 472096504892128500, 19781301201305534464, 882991510898240350666, 41828674437875442696192, 2095750482492627217639360
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
Crossrefs
Cf. A000142.
Programs
-
Magma
[(&+[Factorial(k)*n^(n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jan 12 2022
-
Maple
A112541 := proc(n) add((n-k)!*n^k,k=0..n) ; end proc: seq(A112541(n),n=0..13) ; # R. J. Mathar, Dec 16 2015
-
Mathematica
a[n_]:= Sum[(n-k)!n^k, {k, 0, n}]; Array[a, 17] (* Robert G. Wilson v, Dec 22 2005 *)
-
PARI
a(n) = my(A = 1, B = 1); for(k=1, n, B *= n; A = (n-k+1)*A + B); A \\ Mikhail Kurkov, Aug 09 2025
-
Sage
[sum(factorial(k)*n^(n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jan 12 2022
Formula
a(n) = Sum_{k=0..n} k! * n^(n-k). - G. C. Greubel, Jan 12 2022
Extensions
Corrected and extended by Robert G. Wilson v, Dec 22 2005
Comments