A112575 Chebyshev transform of the second kind of the Pell numbers.
0, 1, 2, 3, 6, 12, 22, 41, 78, 147, 276, 520, 980, 1845, 3474, 6543, 12322, 23204, 43698, 82293, 154974, 291847, 549608, 1035024, 1949160, 3670665, 6912610, 13017851, 24515262, 46167228, 86942286, 163730017, 308336942, 580661211, 1093503228, 2059289112
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See pp. 9-10.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1).
Crossrefs
Cf. A000129.
Programs
-
Magma
C:= ComplexField(); [(&+[Binomial(n-k,k)*Round(I^(n-1)*Evaluate(ChebyshevU(n-2*k), -I)): k in [0..Floor(n/2)]]) : n in [0..40]]; // G. C. Greubel, Jan 14 2022
-
Mathematica
Table[Sum[(-1)^k*Binomial[n-k, k]*Fibonacci[n-2*k, 2], {k,0,Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Jan 14 2022 *)
-
Sage
[sum((-1)^k*binomial(n-k,k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2))) for n in (0..40)] # G. C. Greubel, Jan 14 2022
Comments