cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112575 Chebyshev transform of the second kind of the Pell numbers.

Original entry on oeis.org

0, 1, 2, 3, 6, 12, 22, 41, 78, 147, 276, 520, 980, 1845, 3474, 6543, 12322, 23204, 43698, 82293, 154974, 291847, 549608, 1035024, 1949160, 3670665, 6912610, 13017851, 24515262, 46167228, 86942286, 163730017, 308336942, 580661211, 1093503228, 2059289112
Offset: 0

Views

Author

Paul Barry, Sep 14 2005

Keywords

Comments

The Chebyshev transform of the second kind maps the sequence with g.f. g(x) to the sequence with g.f. (1/(1+x^2))g(x/(1+x^2)).

Crossrefs

Cf. A000129.

Programs

  • Magma
    C:= ComplexField();
    [(&+[Binomial(n-k,k)*Round(I^(n-1)*Evaluate(ChebyshevU(n-2*k), -I)): k in [0..Floor(n/2)]]) : n in [0..40]]; // G. C. Greubel, Jan 14 2022
  • Mathematica
    Table[Sum[(-1)^k*Binomial[n-k, k]*Fibonacci[n-2*k, 2], {k,0,Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, Jan 14 2022 *)
  • Sage
    [sum((-1)^k*binomial(n-k,k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2))) for n in (0..40)] # G. C. Greubel, Jan 14 2022
    

Formula

G.f.: x/(1-2*x+x^2-2*x^3+x^4).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k, k)*A000129(n-2k).
a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*C((n+k)/2, k)*(1+(-1)^(n-k))*A000129(k)/2.