cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112576 A Chebyshev-related transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 4, 6, 16, 29, 67, 132, 288, 588, 1253, 2597, 5480, 11430, 24020, 50233, 105383, 220632, 462528, 968808, 2030377, 4253641, 8913436, 18675174, 39131464, 81989909, 171795691, 359958780, 754224480, 1580315220, 3311234189
Offset: 0

Views

Author

Paul Barry, Sep 14 2005

Keywords

Comments

Transform of the Fibonacci numbers by the Chebyshev related transform which maps g(x) -> (1/(1-x^2))g(x/(1-x^2)).

Crossrefs

Programs

  • GAP
    a:=[0,1,1,4];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 29 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x/(1-x-3*x^2+x^3+x^4) )); // G. C. Greubel, Jul 29 2019
    
  • Mathematica
    (* see A192232 for Mmca code. - M. F. Hasler, Apr 05 2016 *)
    LinearRecurrence[{1,3,-1,-1},{0,1,1,4},40] (* Harvey P. Dale, May 09 2025 *)
  • PARI
    Vec(x/(1-x-3*x^2+x^3+x^4)+O(x^40)) \\ M. F. Hasler, Apr 05 2016
    
  • Sage
    (x/(1-x-3*x^2+x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
    

Formula

G.f.: x/(1-x-3*x^2+x^3+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*F(n-2*k).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*(1+(-1)^(n-k))*F(k)/2.
a(n) = (Fibonacci(n+1, (1+sqrt(5))/2) - Fibonacci(n+1, (1-sqrt(5))/2) )/sqrt(5), where Fibonacci(n,x) is the Fibonacci polynomial (see A011973). - G. C. Greubel, Jul 29 2019