A112576 A Chebyshev-related transform of the Fibonacci numbers.
0, 1, 1, 4, 6, 16, 29, 67, 132, 288, 588, 1253, 2597, 5480, 11430, 24020, 50233, 105383, 220632, 462528, 968808, 2030377, 4253641, 8913436, 18675174, 39131464, 81989909, 171795691, 359958780, 754224480, 1580315220, 3311234189
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Huylebrouck, The Meta-Golden Ratio Chi, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-1).
Programs
-
GAP
a:=[0,1,1,4];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 29 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x/(1-x-3*x^2+x^3+x^4) )); // G. C. Greubel, Jul 29 2019 -
Mathematica
(* see A192232 for Mmca code. - M. F. Hasler, Apr 05 2016 *) LinearRecurrence[{1,3,-1,-1},{0,1,1,4},40] (* Harvey P. Dale, May 09 2025 *)
-
PARI
Vec(x/(1-x-3*x^2+x^3+x^4)+O(x^40)) \\ M. F. Hasler, Apr 05 2016
-
Sage
(x/(1-x-3*x^2+x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
Formula
G.f.: x/(1-x-3*x^2+x^3+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*F(n-2*k).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*(1+(-1)^(n-k))*F(k)/2.
a(n) = (Fibonacci(n+1, (1+sqrt(5))/2) - Fibonacci(n+1, (1-sqrt(5))/2) )/sqrt(5), where Fibonacci(n,x) is the Fibonacci polynomial (see A011973). - G. C. Greubel, Jul 29 2019
Comments