cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112599 Triangle where a(1,1) = 1, a(n,m) = number of terms of row (n-1) which are coprime to m.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 0, 3, 0, 4, 2, 0, 2, 2, 5, 0, 4, 0, 4, 0, 6, 1, 3, 1, 2, 1, 3, 7, 5, 4, 5, 7, 3, 7, 5, 8, 7, 7, 7, 5, 6, 5, 7, 7, 9, 7, 8, 7, 7, 7, 4, 7, 8, 5, 10, 7, 9, 7, 9, 6, 5, 7, 9, 6, 10, 11, 7, 6, 7, 8, 4, 8, 7, 6, 6, 11, 4, 12, 5, 9, 5, 12, 5, 9, 5, 9, 5, 10, 5, 12, 13, 9, 7, 9, 6, 6, 13, 9, 7
Offset: 1

Views

Author

Leroy Quet, Dec 21 2005

Keywords

Comments

GCD(m,0) is considered here to be m, so 0 is coprime to no positive integer but 1.

Examples

			Row 6 of the triangle is [5,0,4,0,4,0]. Among these terms there are 6 terms coprime to 1, 1 term coprime to 2, 3 terms coprime to 3, 1 term coprime to 4, 2 terms coprime to 5, 1 term coprime to 6 and 3 terms coprime to 7. So row 7 is [6,1,3,1,2,1,3].
1
1 1
2 2 2
3 0 3 0
4 2 0 2 2
5 0 4 0 4 0
6 1 3 1 2 1 3
7 5 4 5 7 3 7 5
8 7 7 7 5 6 5 7 7
9 7 8 7 7 7 4 7 8 5
		

Crossrefs

Row sums are in A114718. - Klaus Brockhaus, Jun 01 2009

Programs

  • Mathematica
    f[l_] := Block[{p, t}, p = l[[ -1]]; k = Length[p]; t = Table[ Sum[ If[GCD[p[[j]], n] == 1, 1, 0], {j, k}], {n, k + 1}]; Return[Append[l, t]];]; Flatten[Nest[f, {{1}}, 13]] (* Ray Chandler, Dec 24 2005 *)

Extensions

Extended by Ray Chandler, Dec 24 2005