cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112603 Number of representations of n as the sum of a square and a triangular number.

Original entry on oeis.org

1, 3, 2, 1, 4, 2, 1, 4, 0, 2, 5, 2, 2, 0, 2, 3, 4, 2, 0, 6, 0, 1, 4, 0, 2, 4, 4, 0, 3, 2, 2, 4, 2, 0, 0, 2, 3, 8, 0, 2, 4, 0, 2, 0, 2, 3, 6, 0, 0, 4, 2, 2, 4, 2, 2, 3, 2, 2, 0, 4, 0, 4, 0, 0, 8, 2, 1, 4, 0, 0, 8, 2, 2, 0, 2, 2, 0, 2, 1, 4, 2, 4, 6, 0, 2, 4, 0, 4, 0, 0, 0, 7, 4, 0, 4, 2, 2, 0, 0, 0, 6, 2, 4, 4, 2
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(4) = 4 since we can write 4 = 2^2 + 0 = (-2)^2 + 0 = 1^2 + 3 = (-1)^2 + 3.
1 + 3*x + 2*x^2 + x^3 + 4*x^4 + 2*x^5 + x^6 + 4*x^7 + 2*x^9 + 5*x^10 + ...
q + 3*q^9 + 2*q^17 + q^25 + 4*q^33 + 2*q^41 + q^49 + 4*q^57 + 2*q^73 + ...
		

Crossrefs

Cf. A139093.

Programs

  • Mathematica
    a[n_] := DivisorSum[8n + 1, KroneckerSymbol[-2, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; sumdiv( n, d, kronecker( -2, d)))} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 /(eta(x + A)^3 * eta(x^4 + A)^2), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = A002325(8n+1). [Hirschhorn]
Expansion of q^(-1/8) * eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 29 2006
Euler transform of period 4 sequence [ 3, -4, 3, -2, ...]. - Michael Somos, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139093. - Michael Somos, Mar 16 2011
G.f.: (Sum_{k} x^(k^2)) * (Sum_{k>0} x^((k^2 - k)/2)). - Michael Somos, Sep 29 2006