A112604 Number of representations of n as a sum of three times a square and two times a triangular number.
1, 0, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 3, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 0, 2, 0, 2, 1, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 4, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2
Offset: 0
Keywords
Examples
a(12) = 3 since we can write 12 = 3(2)^2 + 0 = 3(-2)^2 + 0 = 0 + 2*6. 2*12 = 24 = 3*1+21 = 3*3+15 = 3*6+6 so a(12) = 3. G.f. = 1 + x^2 + 2*x^3 + 2*x^5 + x^6 + 2*x^9 + 3*x^12 + 2*x^14 + 2*x^15 + ... - _Michael Somos_, Aug 11 2009 G.f. = q + q^9 + 2*q^13 + 2*q^21 + q^25 + 2*q^37 + 3*q^49 + 2*q^57 + 2*q^61 + ... - _Michael Somos_, Aug 11 2009
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[4n+1, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0]&]; Table[ a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
-
PARI
{a(n) = if(n<0, 0, n=4*n+1; sumdiv(n, d, (d%3==1) - (d%3==2)))};
-
PARI
{a(n) = my(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^6+A)^5 / eta(x^2+A)*(eta(x^4+A) / eta(x^3+A) / eta(x^12+A))^2, n))}; /* Michael Somos, Feb 14 2006 */
Formula
a(n) = A002324(4n+1) = A033762(2n) = d_{1, 3}(4n+1) - d_{2, 3}(4n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
From Michael Somos, Feb 14 2006: (Start)
Expansion of (psi(q)psi(q^3) + psi(-q)psi(-q^3))/2 in powers of q^2 where psi() is a Ramanujan theta function.
G.f.: (Sum_{k} x^k^2)^3*(Sum_{k>0} x^((k^2-k)/2))^2 = Product_{k>0} (1-x^(4k))(1-x^(6k))(1+x^(2k))(1+x^(3k))^2/(1+x^(6k))^2.
Euler transform of period 12 sequence [0, 1, 2, -1, 0, -2, 0, -1, 2, 1, 0, -2, ...]. (End)
From Michael Somos, Aug 11 2009: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164272.
a(3*n + 1) = 0. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 24 2023
Comments