cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112605 Number of representations of n as a sum of a square and six times a triangular number.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 1, 2, 0, 0, 4, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 4, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			a(22) = 4 since we can write 22 = 4^2 + 6*1 = (-4)^2 + 6*1 = 2^2 + 6*3 = (-2)^2 + 6*3.
G.f. = 1 + 2*x + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^15 + 2*x^16 + ... - _Michael Somos_, Aug 11 2009
G.f. = q^3 + 2*q^7 + 2*q^19 + q^27 + 2*q^31 + 2*q^39 + 2*q^43 + 2*q^63 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

A112608(n) = a(2*n). 2 * A112609(n) = a(2*n + 1). A112604(n) = a(3*n). 2 * A121361(n) = a(3*n + 1). A112606(n) = a(6*n). 2 * A131962(n) = a(6*n + 1). 2 * A112607(n) = a(6*n + 3). 2 * A131964(n) = a(6*n + 4). - Michael Somos, Aug 11 2009

Programs

  • Mathematica
    a[n_] := DivisorSum[4n+3, KroneckerSymbol[-3, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    {a(n) = if(n<0, 0, sumdiv(4*n+3, d, kronecker(-3, d)))}; /* Michael Somos, May 20 2006 */
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x*O(x^n); polcoeff( eta(x^2+A)^5*eta(x^12+A)^2 / eta(x+A)^2 / eta(x^4+A)^2 / eta(x^6+A), n))}; /* Michael Somos, May 20 2006 */

Formula

a(n) = d_{1, 3}(4n+3) - d_{2, 3}(4n+3) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-3/4)*eta(q^2)^5*eta(q^12)^2/(eta(q)^2*eta(q^4)^2*eta(q^6)) in powers of q. - Michael Somos, May 20 2006
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -2, 2, -1, 2, -3, 2, -2, ...]. - Michael Somos, May 20 2006
a(n)=A002324(4n+3). - Michael Somos, May 20 2006
Expansion of phi(q)*psi(q^6) in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, May 20 2006, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164273. - Michael Somos, Aug 11 2009
a(3*n + 2) = 0. - Michael Somos, Aug 11 2009