A112606 Number of representations of n as a sum of six times a square and a triangular number.
1, 1, 0, 1, 0, 0, 3, 2, 0, 2, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 3, 0, 0, 2, 2, 0, 4, 1, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 0, 2, 0, 0, 4, 2, 0, 0, 2, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 4, 0, 0
Offset: 0
Keywords
Examples
1 + x + x^3 + 3*x^6 + 2*x^7 + 2*x^9 + x^10 + 2*x^12 + x^15 + 2*x^16 + ... q + q^9 + q^25 + 3*q^49 + 2*q^57 + 2*q^73 + q^81 + 2*q^97 + q^121 + 2*q^129 + ... a(6) = 3 since we can write 6 = 6*1^2 + 0 = 6*(-1)^2 + 0 = 0 + 6.
References
- M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, Sum[ KroneckerSymbol[ -3, d], {d, Divisors[ 8 n + 1]}]] (* Michael Somos, Jun 16 2011 since V6 *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ EllipticTheta[ 3, 0, q^6] EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]] (* Michael Somos, Jun 16 2011 *)
-
PARI
{a(n) = if( n<0, 0, n = 8*n + 1; sumdiv(n, d, kronecker(-3, d)))} /* Michael Somos, Sep 29 2006 */
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))} /* Michael Somos, Sep 29 2006 */
Formula
a(n) = d_{1, 3}(8n+1) - d_{2, 3}(8n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
Expansion of q^(-1/8) * eta(q^2)^2 * eta(q^12)^5 /(eta(q) * eta(q^6)^2 * eta(q^24)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q^6) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 24 sequence [ 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -4, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -2, ...]. - Michael Somos, Sep 29 2006
G.f.: (Sum_{k} x^(6*k^2)) * (Sum_{k>0} x^((k^2-k)/2)). a(3*n+2)=0. - Michael Somos, Sep 29 2006
Comments