A112628 Decimal expansion of 2*sqrt(2)/Pi.
9, 0, 0, 3, 1, 6, 3, 1, 6, 1, 5, 7, 1, 0, 6, 0, 6, 9, 5, 5, 5, 1, 9, 9, 1, 9, 1, 0, 0, 6, 7, 4, 0, 5, 8, 2, 6, 6, 4, 5, 7, 4, 1, 4, 9, 9, 5, 5, 2, 2, 0, 6, 2, 5, 5, 7, 1, 4, 3, 7, 4, 7, 1, 2, 3, 1, 4, 5, 8, 7, 3, 0, 7, 1, 9, 0, 4, 6, 3, 4, 4, 9, 9, 8, 0, 8, 2, 7, 7, 7, 7, 5, 4, 0, 8, 2, 3, 4, 0, 9, 9, 7, 5, 5, 1
Offset: 0
Examples
0.9003163161571060695551991910067405826645741499552206255714374712314587307...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Buffon's needle problem.
- Eric Weisstein's World of Mathematics, Generalized Diameter.
- Index entries for transcendental numbers
Programs
-
Magma
R:= RealField(100); 2*Sqrt(2)/Pi(R); // G. C. Greubel, Aug 17 2018
-
Mathematica
RealDigits[2 Sqrt[2]/Pi, 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *) (* From the second comment: *) RealDigits[N[Product[1 - 1/(4 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
-
PARI
2*sqrt(2)/Pi
Formula
Equals Product_{n>=1} (1-1/(4*n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/4). - Peter Luschny, Oct 04 2019
Equals Product_{k>=3} cos(Pi/2^k). - Amiram Eldar, Aug 24 2020
Comments