cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A205579 a(n) = round(r^n) where r is the smallest Pisot number (real root r=1.3247179.. of x^3-x-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289, 727653, 963935, 1276942, 1691588, 2240877, 2968530, 3932465
Offset: 0

Views

Author

Joerg Arndt, Jan 29 2012

Keywords

Crossrefs

Cf. A112639 (definition using floor() instead of round()).
Cf. A060006 (decimal expansion of r=1.32471795724475...).

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3),{x,0,100}],x] (* Vincenzo Librandi, Aug 19 2012 *)
    r = Root[x^3-x-1, 1]; Table[Round[r^i], {i,0,100 }] (* Jwalin Bhatt, Mar 27 2025 *)
  • PARI
    default(realprecision, 110);
    default(format, "g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, round(r^(n-1)) )
    
  • PARI
    Vec((1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3)+O(x^66))

Formula

G.f.: (1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3).
From Jwalin Bhatt, Mar 26 2025: (Start)
a(n) = round(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n).
a(n) = a(n-2) + a(n-3) for n>=13. (End)
Showing 1-1 of 1 results.