cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112639 a(n) = floor(r^n) where r is the smallest Pisot number (real root r=1.3247179... of x^3-x-1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 51, 67, 89, 119, 157, 209, 276, 366, 486, 643, 853, 1130, 1496, 1983, 2626, 3480, 4610, 6106, 8090, 10716, 14196, 18807, 24913, 33004, 43721, 57917, 76725, 101638, 134643, 178364, 236281, 313007, 414645
Offset: 0

Views

Author

Roger L. Bagula, Mar 31 2006

Keywords

Crossrefs

Cf. A060006 (decimal expansion of r=1.32471795724475...).
Cf. A205579 (definition using round() instead of floor()).

Programs

  • Mathematica
    r = Solve[x^3 - x - 1 == 0, x][[1,1,2]]; Table[Floor[r^n], {n, 0, 50}] (* T. D. Noe, Jan 30 2012 *)
  • PARI
    default(realprecision,110);
    default(format,"g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, floor(r^(n-1)) )  /* Joerg Arndt, Jan 29 2012 */

Formula

a(n) = floor(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n). - Jwalin Bhatt, May 06 2025

Extensions

Completely edited by Joerg Arndt, Jan 29 2012

A382641 a(n) = round(c^n), where c is the supergolden ratio A092526.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907, 13749853
Offset: 0

Views

Author

Jwalin Bhatt, Apr 01 2025

Keywords

Crossrefs

Programs

  • Mathematica
    r = Root[x^3-x^2-1, 1]; Table[Round[r^i], {i,0,120 }]
    CoefficientList[Series[(1+x^2+x^4-x^8)/(1-x-x^3), {x,0,120}], x]

Formula

G.f.: (1 + x^2 + x^4 - x^8)/(1 - x - x^3).
a(n) = a(n-1) + a(n-3) for n>=9.
a(n) = round(((2/3)*cos((1/3)*arccos(29/2))+1/3)^n) = round(A092526^n).
a(n) = A001609(n) for n>=6.
Showing 1-2 of 2 results.