A112653 a(n) squared is congruent to a(n) (mod 13).
0, 1, 13, 14, 26, 27, 39, 40, 52, 53, 65, 66, 78, 79, 91, 92, 104, 105, 117, 118, 130, 131, 143, 144, 156, 157, 169, 170, 182, 183, 195, 196, 208, 209, 221, 222, 234, 235, 247, 248, 260, 261, 273, 274, 286, 287, 299, 300, 312, 313, 325, 326, 338, 339, 351
Offset: 0
Examples
a(3) = 14 because 14*14 = 196 = 1 (mod 13) and 14 = 1 (mod 13).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
I:=[0, 1, 13]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..70]]; // Vincenzo Librandi, May 17 2012
-
Maple
m:= 13; for n from 0 to 300 do if n^2 mod m = n mod m then print(n) fi od;
-
Mathematica
Select[Range[0,400],MemberQ[{0,1},Mod[#,13]]&] (* Vincenzo Librandi, May 17 2012 *) Select[Range[0,400],Mod[#,13]==PowerMod[#,2,13]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,13},60] (* Harvey P. Dale, Feb 07 2023 *)
-
PARI
a(n)=(11*(-1+(-1)^n)+26*n)/4 \\ Charles R Greathouse IV, Oct 16 2015
Formula
From Colin Barker, May 14 2012: (Start)
a(n) = (11*(-1+(-1)^n)+26*n)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2.
G.f.: x*(1+12*x) / ((1-x)^2*(1+x)). (End)
Comments