cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112653 a(n) squared is congruent to a(n) (mod 13).

Original entry on oeis.org

0, 1, 13, 14, 26, 27, 39, 40, 52, 53, 65, 66, 78, 79, 91, 92, 104, 105, 117, 118, 130, 131, 143, 144, 156, 157, 169, 170, 182, 183, 195, 196, 208, 209, 221, 222, 234, 235, 247, 248, 260, 261, 273, 274, 286, 287, 299, 300, 312, 313, 325, 326, 338, 339, 351
Offset: 0

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers that are congruent to {0,1} mod 13. - Philippe Deléham, Oct 17 2001

Examples

			a(3) = 14 because 14*14 = 196 = 1 (mod 13) and 14 = 1 (mod 13).
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 13]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..70]]; // Vincenzo Librandi, May 17 2012
    
  • Maple
    m:= 13; for n from 0 to 300 do if n^2 mod m = n mod m then print(n) fi od;
  • Mathematica
    Select[Range[0,400],MemberQ[{0,1},Mod[#,13]]&] (* Vincenzo Librandi, May 17 2012 *)
    Select[Range[0,400],Mod[#,13]==PowerMod[#,2,13]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,13},60] (* Harvey P. Dale, Feb 07 2023 *)
  • PARI
    a(n)=(11*(-1+(-1)^n)+26*n)/4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = Sum_{k>=0} A030308(n,k) * A005029(k-1) with A005029(-1) = 1. - Philippe Deléham, Oct 17 2011
From Colin Barker, May 14 2012: (Start)
a(n) = (11*(-1+(-1)^n)+26*n)/4.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2.
G.f.: x*(1+12*x) / ((1-x)^2*(1+x)). (End)