A112654 Numbers k such that k^3 == k (mod 11).
0, 1, 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99, 100, 109, 110, 111, 120, 121, 122, 131, 132, 133, 142, 143, 144, 153, 154, 155, 164, 165, 166, 175, 176, 177, 186, 187, 188, 197, 198, 199, 208, 209
Offset: 1
Examples
a(3) = 11 because 11^3 = 1331 == 0 (mod 11) and 11 == 0 (mod 11).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
m = 11 for n = 1 to 300 if n^3 mod m = n mod m then print n; next n
-
Mathematica
Select[Range@ 209, Mod[#, 11] == Mod[#^3, 11] &] (* Michael De Vlieger, Dec 03 2015 *) Select[Range[0,250],PowerMod[#,3,11]==Mod[#,11]&] (* Harvey P. Dale, May 15 2016 *)
Formula
From Colin Barker, Apr 11 2012: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4).
G.f.: x^2*(1+9*x+x^2)/((1-x)^2*(1+x+x^2)). (End)
Comments