A112676 Number of (undirected) Hamiltonian cycles on a triangular grid, n vertices on each side.
1, 1, 1, 3, 26, 474, 17214, 1371454, 231924780, 82367152914, 61718801166402, 97482824713311442, 323896536556067453466, 2262929852279448821099932, 33231590982432936619392054662, 1025257090790362187626154669771934, 66429726878393651076826663971376589034
Offset: 1
Keywords
Examples
a(3) = 1, the only Hamiltonian cycle being the obvious one running around the edge of the triangle.
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..20 [from Pettersson's tables]
- AndrĂ¡s Kaszanyitzky, Triangular fractal approximating graphs and their covering paths and cycles, arXiv:1710.09475 [math.CO], 2017. See Table 1.
- Ville Pettersson, Graph Algorithms for Constructing and Enumerating Cycles and Related Structures, Dissertation, Aalto, Finland, 2015.
- Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
- Index entries for sequences related to graphs, Hamiltonian
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_n_triangular_grid_graph(n): s = 1 grids = [] for i in range(n + 1, 1, -1): for j in range(i - 1): a, b, c = s + j, s + j + 1, s + i + j grids.extend([(a, b), (a, c), (b, c)]) s += i return grids def A112676(n): if n == 1: return 1 universe = make_n_triangular_grid_graph(n - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles(is_hamilton=True) return cycles.len() print([A112676(n) for n in range(1, 12)]) # Seiichi Manyama, Nov 30 2020
Formula
For n>1, a(n) = A174589(n)/2.
Extensions
a(11)-a(16) from Andrew Howroyd, Nov 03 2015
a(17) from Pettersson by Andrey Zabolotskiy, May 23 2017
Comments