A112697 Partial sum of Catalan numbers (A000108) multiplied by powers of 3.
1, 4, 22, 157, 1291, 11497, 107725, 1045948, 10428178, 106126924, 1097913928, 11511677470, 122057782762, 1306480339462, 14098243951822, 153208673236237, 1675240428936307, 18417589741637077, 203464608460961377
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-12*x])/(6*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
-
PARI
x='x+O('x^50); Vec((1-sqrt(1-12*x))/(6*x*(1-x))) \\ G. C. Greubel, Mar 17 2017
Formula
a(n) = Sum_{k=0..n} C(k)*3^k, n>=0, with C(n) = A000108(n).
G.f.: c(3*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers (A000108).
Recurrence: (n+1)*a(n) = (13*n-5)*a(n-1) - 6*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 12^(n+1)/(11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012